
Supplementary: On Generating Transferable Target Perturbations
We study the effect of augmentations and ensemble

learning by analysing class-wise transferability in Ap-
pendix A. We further discuss on why augmentations and
ensemble learning leads to more transferable targeted pat-
ters in Appendix A.1 and Appendix A.2. We then present
the vulnerability of batchnorm to black-box targeted per-
turbations in Appendix B. In Appendix C, we analyze the
effect of linear back-propagation of gradients [3] and us-
ing more gradients from skip connections [14] on the tar-
geted attack transferability. For the sake of completeness,
we report the drop in clean accuracy caused by different de-
fenses including input processing methods (JPEG, Median
Blur, and NRP), adversarial training, and stylized training
in Appendix D. Names of 100 target classes are provided
in Appendix E. Finally, we present visual illustrations to
showcase different targeted adversarial patterns found by
our method, TTP (Transferable Targeted Perturbations), in
Appendix F.

Appendix A. Effect of Augmentations and
Ensemble Learning

We proposed a mechanism to explore augmented ad-
versarial space and ensemble learning to boost transfer-
ability of the targeted adversarial perturbations found by
TTP. A per-class analysis for 10 targets presented in Ta-
ble 1 reveals that augmentations and ensemble learning in-
crease the adversarial effect for every target. TTP is trained
against naturally trained ResNet50 and ResNet ensem-
ble Rens:ResNet{18,50,101,152} and perturbations are
transferred to naturally trained VGG16 and stylized VGG16
[2]. In some cases, such as Hippopotamus, augmented
learning maximizes the transferability from ResNet50 to
naturally trained VGG16 by more than 100% (Table 1).
Similarly, we observe that ensemble learning proves to be
effective e.g., see Grey-Owl in Table 1. VGG16 trained
on stylized ImageNet showed higher resistance against tar-
geted adversarial attacks. For example, transferability of
perturbations found by TTP for French Bulldog distri-
bution is around 11% on VGG16 (SIN) as compared to 63%
on VGG16 trained on ImageNet (IN) (Table 1).

Appendix A.1. Why Augmentations boost Transfer-
ability?

Ilyas et al. [5] showed that adversarial examples can be
explained by features of the attacked class label. In our tar-
geted attack case, we wish to imprint the features of the
target class distribution onto the source samples within an
allowed distance (e.g. l∞ ≤ 16). However, a black-box
(unknown) model might apply different set of transforma-
tions (from one layer to another) to process such features

Clean Image

Rosehip

Dense121

Snowmobile

Dense169

Snowmobile

Figure 1: Unconstrained targeted patterns for Snowmobile are
shown to demonstrate how discriminators (models) from the same
family can capture different information to classify a certain class.
Thus, TTP when trained against ensemble of same family models
shows higher transferability than any of the individual model.

and reduce the target transferability. Training on adversar-
ial augmented samples allows the generator to capture such
targeted features that are robust to transformations that may
vary from one model to another.

Appendix A.2. Why an Ensemble of Weak Models
maximizes Transferability?

Different models of the same family of networks can ex-
ploit different information to make prediction. One such
example is shown in Fig. 1. Generators are trained against
Dense121 and Dense169 to target Snowmobile distribution.
Unrestricted generator outputs reveal that Dense121 is more
focused on Snowmobile’s blades while Dense169 emphasis
background pine tree patterns to discriminate Snowmobile
samples. This complementary information from different
models of the same family helps the generator to capture
more generic global patterns for a given target distribution.

Appendix B. The Vulnerability of Batchnorm
Batchnorm [8] helps in optimization of neural networks

as well as increases their clean accuracy. However, our em-
pirical cross-family (Dense → VGGBN , Dense → VGG,
ResNet → VGGBN , ResNet → VGG) analysis presented
in Fig. 2 suggests that batchnorm makes the model more
vulnerable to the targeted adversarial attacks. Adversarial
perturbations found by TTP transfer better against mod-
els trained using batchnorm as compared to models trained
without it (Fig. 2).

Appendix C. Skip Connections and Linear
Back-Propagation of Gradients

Dongxian et al. [14] observed that while back-
propagating, giving more importance to the gradients com-
ing from skip connections can enhance adversarial transfer-
ability. Similarly, Guo et al. [3] showed that encouraging
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Average

ResNet50 7 56.5 80.9 49.0 43.9 61.9 82.9 56.5 89.4 41.3 72.9 63.5
ResNet50 3 56.7 84.1 63.7 94.9 79.5 91.5 76.5 89.8 70.4 80.8 78.8
Rens 3 85.1 94.5 63.3 97.8 90.5 95.8 90.7 96.1 89.6 90.4 89.1

Target Model: VGG16 (SIN)

ResNet50 7 1.61 43.1 0.50 40.9 14.9 9.6 5.8 36.2 6.2 19.2 17.8
ResNet50 3 1.30 69.6 11.6 68.7 17.0 15.2 20.5 33.2 35.4 30.9 30.3
Rens 3 17.6 77.7 11.4 77.0 59.7 48.4 56.1 72.8 74.1 41.2 53.6

Table 1: Per Target Transferability of our Method (TTP): Top-1 target accuracy (%) with 49.95K ImageNet val. samples for each target.
Perturbation budget: l∞ ≤ 16. Adversarial perturbations are transferred from naturally trained ResNet50 and ResNet ensemble to naturally
trained VGG16 and stylized VGG16 [2]. Augmentations as well as ensemble learning improves efficiency of TTP.
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Figure 2: Batchnorm Vulnerability to Targeted Transferability : {10-Targets (all source) settings}. TTP (Algorithm 1 in the paper)
strength is higher against models trained naturally with batchnorm as compared to without batchnorm. Batchnorm [8] provides better
optimization and increase model clean accuracy but these empirical results indicate that it also make the model more vulnerable to blackbox
targeted attacks. Each value is averaged across 10 targets (see Section 4 in the paper for details) with 49.95k ImageNet val. samples for
each target. Perturbation budget is l∞ = 16.
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PGD [10] 0.8/2.1 1.9/3.7 3.0/4.7 2.5/4.4 0.3/1.5 0.4/1.3 0.1/0.4 0.1/0.3 0.0/0.0 0.0/0.0
MI [1] 1.5/1.8 3.2/6.2 3.1/5.6 3.0/4.6 1.1/1.4 1.0/1.6 0.3/0.9 0.2/0.4 0.0/0.1 0.0/0.0
DIM [15] 10.4/14.4 16.2/26.0 13.4/20.9 13.4/19.8 6.4/6.7 4.8/7.7 1.7/3.2 0.5/1.2 0.2/0.5 0.1/0.1
Po-TRIP [9] 12.5/15.0 18.2/30.0 15.9/23.7 14.2/22.3 7.3/8.9 5.5/9.0 2.1/3.7 0.8/2.0 0.3/0.7 0.1/0.1
FDA-fd [6] 16.0/25.3 21.0/33.1 19.7/32.9 17.1/28.4 12.0/18.7 15.3/19.3 3.1/6.3 1.2/3.0 0.1/1.9 0.1/0.3
FDA-N [7] 32.1/38.6 48.3/52.3 37.5/39.0 35.5/40.7 19.0/28.3 20.3/30.3 5.0/16.6 3.0/10.7 0.6/4.7 0.2/0.8
SGM [14] 19.2/26.3 25.9/40.6 19.7/31.1 21.6/30.4 13.5/13.7 10.5/15.9 2.6/6.1 1.3/2.8 0.5/1.2 0.1/0.3
SGM [14] + LinBP [3] 22.0/27.1 34.5/40.0 30.5/32.9 25.1/21.0 14.8/15.0 17.3/25.3 4.6/14.3 2.4/8.0 0.3/2.9 0.1/0.3
Ours (TTP) 79.0/81.4 84.4/87.0 81.9/86.6 80.2/81.2 79.4/78.2 72.7/81.2 30.5/42.4 29.3/36.9 5.5/50.1 0.4/17.1

Table 2: Target Transferability: {10-Targets (sub-source)} Top-1 target accuracy (%) averaged across 10 targets. Perturbation budget:
l∞ ≤ 16/32. SIN [2] and Adv (l∞=0.5), and Adv (l∞=1.0) [13] are ResNet50 models trained using stylized and adversarial examples,
respectively. Augs. represents augmentation based training [4] of ResNet50.

Model Defense Accuracy Difference

VGG19BN

– 74.24 0.0
JPEG 67.34 -6.90
Blur 53.86 -20.38
NRP 72.00 -2.24

Dense121

– 74.65 0.0
JPEG 68.92 -5.73
Blur 61.27 -13.38
NRP 72.01 -2.63

ResNet50

– 76.15 0.0
JPEG 70.82 -5.33
Blur 61.30 -14.85
NRP 73.21 -2.94

Table 3: Effect of Input Processing on Clean Accuracy: Top-1
(%) accuracy on ImageNet val. set (50k images). Median Blur
with window size 5×5 causes large drop in clean accuracy while
NRP [11] has the least effect on the model’s clean accuracy.

linearity while back-propagating gradients improve trans-
ferability. Here, we analyze target transferability of both of
these techniques [14, 3] and present a holistic comparison of
approach (TTP) against iterative instance-specific attacks in
Table 2. Our approach sets new state-of-the-art in targeted
adversarial transferability by notable large margins.

Appendix D. Clean Accuracy vs. Defenses

We evaluate the effect of different defenses on model’s
clean accuracy. We study the input processing methods in-
cluding JPEG with quality 50% [12], Median Blur with ker-
nel size 5×5 [12] and NRP [11] as well as different training
mechanisms including Augmix [4], stylized [2] and adver-
sarial training methods [10, 13]. Results are presented in

Model Training Type Accuracy Difference

ResNet50

IN 76.15 0.0
SIN 60.18 -15.97

SIN-IN 74.59 -1.56
Augmix 77.53 +1.38

Adv. (l∞, ε = .5) 73.73 -2.42
Adv. (l∞, ε = 1) 72.05 -4.10
Adv. (l2, ε = .1) 74.78 -1.37
Adv. (l2, ε = .5) 73.16 -2.99

VGG16 IN 71.59 0.0
SIN 52.26 -19.33

Table 4: Effect of Robust Training on Clean Accuracy: Top-1
(%) accuracy on ImageNet val. set (50k images). Every train-
ing mechanism with the exception of Augmix [4] reduces model’s
clean accuracy. Stylized training [2] causes significant drop in ac-
curacy in comparison to other types of training methods.

Tables 3 & 4. We observe that Median Blur causes a signif-
icant drop in clean accuracy (Table 3) while among training
methods, stylized training (SIN) [2] has the most negative
effect on the clean accuracy.

Appendix E. 100 Targets Names

The performance of TTP is evaluated against the fol-
lowing randomly selected 100 targets (see Sec. 4.1 of the
paper). We divide ImageNet classes into 100 mutually ex-
clusive sets. Each set contains 10 classes. We randomly
selected one target from each set.
Tiger-Shark, Bulbul, Grey-Owl, Terrapin,
Komodo-Dragon, Thunder-Snake, Trilobite,
Scorpion, Quail, Goose, Jellyfish, Slug,
Flamingo, Bustard, Dowitcher, Chihuahua,
Beagle, Weimaraner, Lakeland-Terrier,



Australian-Terrier, Golden-Retriever,
English-Setter, Komondor, Appenzeller,
French-Bulldog, Chow, Keeshond, Hyaena,
Egyptian-Cat, Lion, Bee, Leafhopper, Sea-Urchin,
Zebra, Hippopotamus, Polecat, Gorilla,
Langur, Eel, Anemone-Fish, Airliner, Banjo,
Bassinet, Beaker, Bell-Cote, Bookcase, Buckle,
Cannon, CD-Player, Chain-Saw, Coil, Cornet,
Crutch, Dome, Electric-Guitar, Fire-Truck,
Garbage-Truck, Greenhouse, Grocery-Store,
Honeycomb, iPod, Jigsaw-Puzzle, Lipstick,
Maillot, Maze, Military-Uniform, Model-T,
Neck-Brace, Overskirt, Parachute, Pay-Phone,
Pickup, Pirate-Ship, Poncho, Purse, Rain-Barrel,
Rotisserie, School-Bus, Sewing-Machine,
Shopping-Cart, Snowmobile, Spatula, Stove,
Sunglass, Teapot, Toaster, Tractor, Umbrella,
Velvet, Wallet, Whiskey-Jug, Street-Sign,
Ice-Lolly, Pretzel, Cardoon, Hay, Pizza, Volcano,
Rapeseed, Agaric

Appendix F. Visual Demos
Figures 3, 4, 5, 6, 7 and 8 show different targeted pat-

terns produced by TTP trained against naturally trained
ResNet50. We demonstrate how adversarial patterns evolve
as TTP learns to model a certain target distribution from
different networks of the same family in Figures 9 and 10.



Original Images

Source model: ResNet50, Target Distribution: Jellyfish, Transferabiliy to Dense121: 90.05 %

Source model: ResNet50, Target Distribution: Lipstick, Transferability to Dense121: 95.20 %

Figure 3: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Stove, Transferabiliy to Dense121: 36.86%

Source model: ResNet50, Target Distribution: Rapeseed, Transferabiliy to Dense121: 49.59%

Figure 4: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Banjo, Transferabiliy to Dense121: 82.95%

Source model: ResNet50, Target Distribution: Anemone Fish, Transferabiliy to Dense121: 74.45%

Figure 5: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Parachute, Transferabiliy to Dense121: 95.30%

Source model: ResNet50, Target Distribution: Sea Urchin, Transferabiliy to Dense121: 89.10%

Figure 6: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: iPOD, Transferabiliy to Dense121: 69.86%

Source model: ResNet50, Target Distribution: Buckle, Transferabiliy to Dense121: 77.06%

Figure 7: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Bookcase, Transferabiliy to Dense121: 85.21%

Source model: ResNet50, Target Distribution: Sewing Machine, Transferabiliy to Dense121: 67.26%

Figure 8: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).
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Figure 9: Evolution of TTP: Unconstrained targeted adversarial patterns generated by TTP are shown to demonstrate how TTP evolves
as it learns perturbations from different source models of a certain family of networks.
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Figure 10: Evolution of TTP: Unconstrained targeted adversarial patterns generated by TTP are shown to demonstrate how TTP evolves
as it learns perturbations from different source models of a certain family of networks.
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