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1. Relation about Parameter Regularization Methods

Our approach has something common with some parameter regularization techniques—Elastic Weight Consolidation
(EWC) [4] and Synaptic Intelligence (SI) [9]—in the sense that they propose weighting schemes in continual learning sce-
narios. Both EWC and SI attempt to regularize model parameters using the weights given by either first-order information
or cumulative trajectories in the parameter space, respectively; they desire to learn proper representations by backpropaga-
tion. On the other hand, our algorithm is based on knowledge distillation, where the learned representations are regularized
using the weights given by the impact of individual activation changes with respect to the final loss, and expects the model
parameters to be learned for generating the desirable features. Contrary to EWC and SI, which attempt to preserve the repre-
sentations of old tasks indirectly via parameter regularization, our method optimizes the representation directly, which would
be more effective for class-incremental continual learning.

2. Comparison with Parameter Regularization Method

To demonstrate the performance of our approach compared to parameter regularization methods, which we discuss in
Section 3.6 of the main paper, we present the results from Elastic Weight Consolidation (EWC) [4] and naı̈ve fine-tuning
(FT) under the same memory constraint with ours in Table 1. Although both EWC and our approach attempt to maintain
important information in the previous tasks, the proposed method optimizes the objective function directly via knowledge
distillation and achieves superior performance. Note that a similar discussion has been made in [3, 7] as well.

Table 1. Class-incremental action recognition performance evaluation on UCF101 and HMDB51 between fine-tuning (FT), EWC and the
proposed method. Note that “E” indicates the existence of exemplars. The bold-faced number means the best performance. EWC slightly
outperforms the fine-tuning, while our approach surpasses both methods by large margins.

UCF101 HMDB51
Num. of classes 10 × 5 stages 5 × 10 stages 2 × 25 stages 5 × 5 stages 1 × 25 stages
FT + E 67.65 66.67 65.36 38.58 34.83
EWC [4] + E 69.70 68.12 67.00 39.98 35.94
TCD (Ours) w/o Lortho 73.09 72.61 71.33 45.14 46.11
TCD (Ours) 74.89 73.43 72.19 45.34 46.66

3. Compatibility with Bias Correction Method

In order to show the compatibility of our distillation objective to other kinds of algorithms, we combine the proposed
method with an existing bias correction method, Bias Correction (BiC) [8]. For a fair comparison, we replace the classifier
of our model with a linear classifier. We set the ratio between training/validation split on the exemplars to 4 : 1 to perform
BiC method, as we use 5 exemplars per class. Table 2 illustrates the results on UCF101. The performance gap between BiC
combined with ours and BiC become larger when the number of incremental steps increase, which implies the robustness of
the proposed approach.



Table 2. Compatibility of our distillation loss with the bias correction (BiC) method on UCF101. The bold-faced number indicates the best
performance.

Num. of classes 10 × 5 stages 5 × 10 stages 2 × 25 stages
BiC 77.00 74.94 68.85
BiC + TCD (Ours) 77.22 75.63 72.00

4. Effect of Number of Input Frames
We set 8 frames as the input size following the convention of action recognition models [5, 6]. However, our algorithm

also works well with different input sizes, which incur a trade-off between accuracy and cost. Table 3 demonstrates the results
by varying the number of frames on UCF101 with the same backbone model, TSM. It shows that our algorithm consistently
outperforms PODNet regardless of the number of input frames.

Table 3. Effect of input size on UCF101 with 10 stages.

# of frames 16 8 4 1
Classifier CNN NME CNN NME CNN NME CNN NME
PODNet 73.36 74.80 71.58 73.75 70.93 73.47 68.89 71.98
TCD (Ours) 75.17 76.13 73.43 75.35 71.17 74.18 69.14 72.93

5. Implementation Details
For all experiment, we set the initial learning rate as 0.001 and adopt the SGD optimizer with weight decay of 0.0005. The

learning rate is divided by 10 after 20 and 30 epochs. We construct our Local Similarity Classifier (LSC) by using 3 proxies
and allow η to be trained throughout the training procedure. For UCF101, we set α = 1.0 for the intermediate features and
0.01 for the logit, and set β = 0.1 for Lortho. For HMDB51, we set α = 3.0 for the intermediate features and 0.1 for the logit,
and set β = 0.3. For Something-Something V2, we set α = 0.5 for the intermediate features and 10.0 for the logit, and set

β = 10−3. Following PODNet [1] and UCIR [2], we further multiply an adaptive scaling factor λ =
√
|C1:k|
|Ck| to α at each

incremental step k, where C1:k = C1 ∪ · · · ∪ Ck denotes the number of class observed until the incremental step k.
To compare our method to the existing continual learning methods, we reimplement each algorithm and search the hyper-

parameters using a grid search. For UCIR [2] and PODNet [1], we explore the hyperparameters for the distillation losses,
a · 10b, with a ∈ {1, 3, 5} and b ∈ {−2, · · · , 2}. As a result, we set the weight for UCIR as 5 and set the rest of the
hyperparameters as same as the original paper. PODNet has two distillation terms, the distillation term for intermediate
features and the logit. We set the weight of each loss term to (0.5, 3.0), (0.1, 1.0), and (1.0, 5.0) for UCF101, HMDB51, and
Something-Something V2 respectively. The margin for the LSC is set to 0.6 for both PODNet and ours.
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