Supplementary Materials

This supplemental document provides the following additional contents to support the main paper:

- A Overview of notation used in the paper
- B Additional quantitative evaluation
- C Interpretation of $m_{O \rightarrow N}^{1}$ for 1-ON
- D Interpretation of $S-C o m m$ using vocabulary size 3
- E Interpretation of $\mathrm{U}-\mathrm{Comm}$ and $\mathrm{S}-\mathrm{Comm}$ for 2 -ON
- G Additional analyses to check for information content of messages
- F Episode map visualizations
- H Implementation details

A. Notation overview

Table 1 provides a summary of the definitions of important notations used in the paper and this supplementary document.

B. Additional quantitative evaluation

We report only the PPL and Progress metrics in the main paper. Table 2 summarizes the complete set of evaluation metrics we use: Progress, PPL, Success and SPL. The trends in Success and SPL are similar to those in Progress and PPL. We also perform generalization experiments by evaluating models trained on $3-\mathrm{ON}$ on the more difficult $4-\mathrm{ON}$ and 5 -ON tasks. Table 2 summarizes those results as well. We observe that S -Comm outperforms $\mathrm{U}-\mathrm{Comm}$ in these generalization experiments as well.

Table 3 shows the effect of increasing message length on the task performance. 2-dimensional message results are repeated from ??. S-Comm still outperforms U -Comm on equal message lengths. Overall, there are small improvements with increasing message dimension. We hypothesize that A_{O} can encode the goal location in 2-dimensional messages, thus higher-dimensional messages provide small improvements.

C. Interpretation of $m_{O \rightarrow N}^{1}$ for 1-ON

In the CoMON task, A_{N} has knowledge of the goal to visit while A_{O} has knowledge of the semantic map (with goal positions) as well as the position and orientation of A_{O}. In the main paper, we showed that $m_{O \rightarrow N}^{2}$ is used to communicate the location of the goal. Here we consider
what information is in the initial message sent from A_{O} to $A_{N}\left(m_{O \rightarrow N}^{1}\right)$ for 1-ON. Note that in the case of 1-ON, there is only one goal, so A_{O} can already send information about that goal without waiting for $m_{N \rightarrow O}^{1}$. Using similar methods as we employed in the main paper for $m_{O \rightarrow N}^{2}$, we find that $m_{O \rightarrow N}^{1}$ is also used to communicate the location of the goal relative to A_{N} for U -Comm and $\mathrm{S}-\mathrm{Comm}$.

C.1. Interpretation of $m_{O \rightarrow N}^{1}$ in $\mathrm{U}-\mathrm{Comm}$

Figure 1 shows the distribution of $m_{O \rightarrow N}^{1}$ w.r.t. the relative coordinates of the goal object from A_{N}, using a similar visualization as for $m_{O \rightarrow N}^{2}$ (Figure 5 in the main paper). We note there is a correlation between $m_{O \rightarrow N}^{1}$ and the location of the current goal object: with the first element indicating whether the goal is to the left of the agent, and the second element whether the goal is to the right. To quantify the relation, we again fit linear probes. As the target of the linear probe, we bin the angles into 8 bins each of 45° (see dashed lines in Figure 1). Our probe attains classification accuracy of 51% (compared to chance accuracy of 12.5%) supporting our hypothesis that $m_{O \rightarrow N}^{1}$ includes information about the location of the current goal object relative to A_{N}.

C.2. Interpretation of $m_{O \rightarrow N}^{1}$ in $\mathrm{S}-\mathrm{Comm}$

As in the main paper (Section 6.2), we perform a similar analysis for $m_{O \rightarrow N}^{1}$ as for $m_{O \rightarrow N}^{2}$, where we use thresholds to group the messages into Δ_{1}, Δ_{2}, and Δ_{3}. Figure 2 plots the distribution of each symbol w.r.t. the relative location of the current goal relative to A_{N} (similar to Figure 6 in the main paper). We observe that $m_{O \rightarrow N}^{1}$ is again used to convey the goal object location, but the correlation between the communicated message and the goal object location is weaker than that of $m_{O \rightarrow N}^{2}$. This is evident from the higher overlap of the regions corresponding to each symbol (compared to Figure 6 in the main paper). This observation is confirmed by the lower classification accuracy of 83% (vs 89% for $m_{O \rightarrow N}^{2}$) after training a random forest classifier to predict the communicated symbol from the (x, y) coordinate of the current goal object.

Notation	Description	Notation	Description
m-ON	Episode with m ordered object goals	\hat{b}_{N}	Initial belief of A_{N}
G	Sequence of goal objects	b_{O}	Final belief of A_{O}
A_{O}	Oracle agent	b_{N}	Final belief of A_{N}
A_{N}	Navigator agent	v_{a}	Embedding of previous action a_{t-1}
M	Oracle map in global frame	s	Final state representation
o_{t}	Egocentric RGBD frames	$m_{N \rightarrow O}^{r}$	Message sent by A_{O} to A_{N} in round r
g_{t}	Current goal object one-hot vector	$m_{O \rightarrow N}^{r}$	Message sent by A_{N} to A_{O} in round r
a_{t}	Action taken by the agent	r_{t}	Reward at time-step t
$\mathrm{U}-\mathrm{Comm}$	Unstructured communication	$r^{\text {goal }}$	Reward for finding a goal
$S-$ Comm	Structured communication	$r^{\text {closer }}$	Reward for moving closer to goal
E	Oracle map in egocentric frame	$r^{\text {time penalty }}$	Time penalty reward
v_{o}	RGBD features	w_{i}	Embedding of word i
v_{g}	Embedding of one-hot goal vector g_{t}	p_{i}	Probability for word i
\hat{b}_{O}	Initial belief of A_{O}	Δ_{i}	Communication symbol i

Table 1. Summary of notation. Subscript t denotes the corresponding notation at time step t

	Progress (\%)					PPL (\%)					Success (\%)					SPL (\%)				
	1-ON	2 -ON	$3-\mathrm{ON}$	4-ON	5-ON	$1-\mathrm{ON}$	2 -ON	$3-\mathrm{ON}$	4-ON	5-ON	$1-\mathrm{ON}$	2 -ON	$3-\mathrm{ON}$	$4-\mathrm{ON}$	5-ON	$1-\mathrm{ON}$	$2-\mathrm{ON}$	$3-\mathrm{ON}$	4-ON	5-ON
NoCom	56	39	26	10	7	35	26	16	7	5	56	30	10	7	2	35	18	5	3	1
Rand U-Comm	59	40	28	7	5	36	28	18	3	2	58	33	12	0	0	32	20	6	0	0
Rand S-Comm	50	31	24	16	10	33	24	16	11	6	50	30	9	6	1	33	16	5	3	1
U-Comm	87	77	63	41	26	60	51	39	23	13	87	57	53	23	7	60	43	40	13	3
S-Comm	85	80	70	50	35	67	59	50	32	22	85	65	58	32	14	67	46	45	20	9
OracleMap	89	80	70	45	26	74	64	52	28	14	89	69	61	27	8	74	49	42	16	4

Table 2. Additional quantitative metrics on 1-ON, $2-\mathrm{ON}$ and 3-ON tasks and generalization to 4-ON and $5-\mathrm{ON}$. All agents are trained on $3-\mathrm{ON}$ and evaluated on the task indicated in each column.

	Dim	Progress (\%)			PPL (\%)		
		1-ON	2-ON	$3-\mathrm{ON}$	1-ON	2-ON	3-ON
U-Comm	2	87	77	63	60	51	39
	3	88	78	67	66	55	45
	4	88	79	68	66	57	46
S-Comm	2	85	80	70	67	59	50
	3	89	78	70	72	57	52
	4	90	80	70	67	60	54

Table 3. Effect of message length on performance. S-Comm outperforms U -Comm on similar message length and there is a slight improvement with increasing message dimension.

D. Interpretation of S -Comm for vocabulary size 3

We provide details of the analysis of S-Comm with vocabulary of size 3 . Similar to our analysis for vocabulary
size 2 (see section 6.2 in main paper), we bin the messages probabilities based on the observed probabilities. Due to the larger vocabulary size, we bin the messages into six classes (vs 3 classes for vocabulary size of 2): $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}, \Delta_{5}$ or Δ_{6}. See H .4 for more details about the binning process. When we examine the messages, we see a consistent pattern as we observed for vocabulary size 2 .
What does A_{N} tell A_{O} in $m_{N \rightarrow O}^{1}$? Here also, we observe that A_{N} uses $m_{N \rightarrow O}^{1}$ to convey the goal object to $A_{O} . A_{N}$ send Δ_{1} when the goal object is a red, green, pink, or cyan cylinder. It sends Δ_{2} for blue and yellow cylinders, and it sends Δ_{3} otherwise. We find that $\Delta_{4}, \Delta_{5}, \Delta_{6}$ are not used for $m_{N \rightarrow O}^{1}$, and are only used in $m_{O \rightarrow N}^{2}$ and $m_{O \rightarrow N}^{1}$.
What does A_{O} tell A_{N} in $m_{O \rightarrow N}^{2}$? We perform the same interpretation analysis as we did for vocabulary size 2 in the main paper. We again observe that A_{O} utilizes $m_{O \rightarrow N}^{2}$ to convey the goal location to A_{N} (see Figure 3). Because of the availability of more communication symbols in vocabulary size $3, A_{O}$ send more fine-grained information about

Figure 1. Egocentric visualization of U-Comm communication symbol $m_{O \rightarrow N}^{1}$. The two plots visualize the value of the first and second element of the message plotted w.r.t. the relative coordinates of the goal object from A_{N}. The navigator agent A_{N} is facing the +y axis and its field-of-view is marked with red lines. The plot on the left corresponds to the $1^{\text {st }}$ dimension of the message, while the plot on the right corresponds to the $2^{\text {nd }}$ dimension. The value of each dimension is indicated by the color hue.

Figure 2. Egocentric visualization of \mathbf{S}-Comm communication symbol $m_{O \rightarrow N}^{1}$. The plots show the relative coordinates of the current goal object from A_{N} 's perspective when A_{O} communicates the symbol through S-Comm with vocabulary size two. The navigator agent $\left(A_{N}\right)$ is facing the +y axis and its field-of-view is marked with red lines. Data points are accumulated across all validation episodes, and we plot contour lines of the bivariate density distribution. Each data point is a message with (x, y) coordinates determined from the coordinates of the current goal object in A_{N} 's egocentric reference frame when the message was sent. The first three plots are for each communication symbol, and the right-most combines all symbols. Note how each symbol represents distinct regions that are egocentrically organized around the agent: Δ_{1} captures 'behind and not visible', Δ_{2} corresponds mostly to 'close, in front', and Δ_{3} is 'farther in front'.
the regions. Similar to vocabulary size 2 (main paper section 6.2), we observe that more symbols are allocated to the front of the agent than at its back.

What does A_{O} tell A_{N} in $m_{O \rightarrow N}^{1}$? For this message, our observations are again consistent with those of vocabulary size 2 (see Figure 4). A_{O} sends different symbols for different goal locations, but there is more overlap between the regions allocated to the symbols as compared to that in $m_{O \rightarrow N}^{2}$.

E. Interpretation for 2-ON

Most of our analysis thus far has focused on 1-ON. Here we analyze what is communicated in $\mathrm{U}-\mathrm{Comm}$ and $\mathrm{S}-\mathrm{Comm}$ for $2-\mathrm{ON}$ using the same methodology.

E.1. Interpretation of $U-C o m m$ for $2-O N$

What does A_{N} tell A_{O} in $m_{N \rightarrow O}^{1}$? We observe that the distribution of $m_{N \rightarrow O}^{1}$ is similar to that in Figure 4 of the main paper. This is expected as A_{N} would send similar message irrespective of the number of goals in an episode.
What does A_{O} tell A_{N} in $m_{O \rightarrow N}^{2}$? In Figure 5, we show show the distribution of $m_{O \rightarrow N}^{2}$ against the current object
goal in the spatial reference frame defined by the position and orientation of A_{N} (egocentric frame) at the environment step when the message was sent. Our observations are consistent with what we observed for 1-ON. $m_{O \rightarrow N}^{2}$ is used to convey the goal location to A_{N}.

E.2. Interpretation of S-Comm for 2-ON

In this setting we use a vocabulary size of 2 and group the messages into three symbols as in the main paper. Because the number of symbols is less than the number of possible goals, we observe that the agents use a partitioning scheme when sending messages. This phenomenon has been observed in Kottur et al. and is consistent with game theory results.
What does A_{N} tell A_{O} in $m_{N \rightarrow O}^{1}$? Here also, A_{O} sends similar $m_{N \rightarrow O}^{1}$ as in 1-ON. That is, A_{O} sends Δ_{1} when the goal object is a red, white or black cylinder, and sends Δ_{2} otherwise. A_{N} partitions the goal objects into two sets: P_{1} with 3 categories and P_{2} with 5 categories.
What does A_{O} tell A_{N} in $m_{O \rightarrow N}^{2}$? As $m_{N \rightarrow O}^{1}$ only sends Δ_{1} or Δ_{2}, A_{O} cannot infer the precise current goal object. If both of these objects lie in P_{2}, A_{N} would send Δ_{2} to A_{O} throughout the episode. Therefore, A_{O} would not know which of the 2 objects A_{N} is looking for at the moment. Instead, if one of the target objects lies in P_{1} and the other in P_{2}, A_{O} can infer the current target object A_{N} is looking for. We plot the message $m_{O \rightarrow N}^{2}$ for the two cases separately. In Figure 6, first row represents the case when the current goal can be distinguished from $m_{N \rightarrow O}^{1}$. Note that the current goal is said to be distinguishable from $m_{N \rightarrow O}^{1}$ if the two goals for the episode lie in separate partitions P_{1} and $P_{2} . m_{O \rightarrow N}^{2}$ correlates more strongly with the location of the current goal in the former case, where A_{O} could infer the current goal before sending $m_{O \rightarrow N}^{2}$. This is reflected in the symbols being more well separated in the first row of Figure 6 than in the second row. This can be observed by the overlaps between symbols. Distinguishable goals have less overlap between symbol regions as compared to indistinguishable goals. To quantify the separation of symbols in the two plots, we also train a random forest classifier to predict the communication symbol given the x, y coordinates of the symbol in the plots as input. The prediction accuracy for distinguishable goals is 84% and for indistinguishable goals it is 76%.

F. Episode map visualizations

In Figure 7, we provide a visualization of egocentric observations and map state for S-Comm at several points on the trajectory to show correlations between the communication symbols for $m_{N \rightarrow O}$ (shown on the trajectory) and what the agent observes at each position. Similarly in Figure 8, we show the correlations for $m_{O \rightarrow N}$.

G. Are messages conveying other information?

We investigated other information that the messages might be conveying, but did not find a strong signal. We checked if $m_{O \rightarrow N}^{1}$ or $m_{O \rightarrow N}^{2}$ conveys the optimal action and if $m_{N \rightarrow O}^{1}$ conveys whether the current goal is in A_{N} 's view. We also checked whether messages from A_{N} to A_{O} contain direction, and messages from A_{O} to A_{N} contain color, and did not find any correlations.

H. Implementation details

H.1. Architecture details

Here we report the architectural details. A_{O} has an oracle map M of spatial dimension 300×300. This contains occupancy and goal object information. M is converted to egocentric map E of spatial dimension 45×45. Each of the occupancy and goal object information is converted to 16 dimensional embeddings for each grid location so the map is of dimension $45 \times 45 \times 32$. This is passed through a map encoder comprising of a two layered CNN and a linear layer to obtain 256-dimensional belief $\hat{b}_{O} . b_{O}$ is a 256-dimensional vector as well.

RGBD observations of A_{O} are passed through an image encoder. It consists of three CNN layers and a linear layer to obtain an image embedding v_{o} of shape 512 . The current goal embedding v_{g} and previous action embedding v_{a} are both 16 - dimensional vectors. The belief \hat{b}_{N} and b_{O} are of shape 512 . The state representation vector s is of shape 528 .

H.2. Details about random baselines

Here, we present the implementation details for Rand $U-C o m m$ and Rand $S-C o m m$. In Rand $U-C o m m$, we replace the message by a random vector sampled from a multivariate gaussian distribution with mean and variance equal to the mean and variance of the corresponding message sent in the validation set. For Rand S-Comm, we replace the message by random probabilities sampled from a random multinomial probability vectors and these probabilities sum up to 1 .

H.3. s -Comm classifier implementation

To establish the existence of various correlations between the communication symbols exchanged between the agents in S-Comm, we train random forest classifiers that predict the communication symbol given a quantity Q as input. We report the classification accuracy for $m_{N \rightarrow O}^{1}$ and $m_{O \rightarrow N}^{2}$ in Section 6.2 and for $m_{O \rightarrow N}^{1}$ above. For all of these, the data for training/evaluating the classifier is obtained by evaluating the model on the validation set of 1,000 episodes and accumulating the relevant metrics at each environment step across the 1,000 episodes. At each environment step, we log the following: $\left\{m_{N \rightarrow O}^{1}, m_{O \rightarrow N}^{1}, m_{O \rightarrow N}^{2}\right.$, current object
goal category, relative location of current goal in A_{N} 's egocentric reference frame.\} We first balance the dataset such that each symbol Δ_{i} has equal number of training examples. The collected data, where each data point corresponds to an environment step, is divided into train and val sets in $3 / 1$ ratio. The classifier is then trained to predict the communication symbol Δ_{i} from quantity q using the train set. We report the classification accuracy on the val set.

H.4. Binning of probabilities in S -Comm

Here, we describe the implementation of binning to create the discrete symbols used in our interpretation of S-Comm.
Vocabulary size 2. Let the probability vector output by the final softmax layer of communication module be $\boldsymbol{p}=$ [p_{1}, p_{2}] and let the binned vector be \boldsymbol{d}. If $p_{1}<0.2, \boldsymbol{d}=$ $[0,1]$; if $p_{1}>0.8, \boldsymbol{d}=[1,0]$; and if $0.2 \leq p_{1} \leq 0.8$, $\boldsymbol{d}=[0.5,0.5]$. As such, each agent sends one of the three categorical vectors during each round of communication.
Vocabulary size 3. Here, the model outputs a probability vector \boldsymbol{p} of length 3: $\left[p_{1}, p_{2}, p_{3}\right]$. The procedure for obtaining the binned vector \boldsymbol{d} is described below:

$$
\boldsymbol{d}= \begin{cases}{[1,0,0]} & \text { if } p_{1}>0.75 \\ {[0,1,0]} & \text { if } p_{2}>0.75 \\ {[0,0,1]} & \text { if } p_{3}>0.75 \\ {[0,0.5,0.5]} & \text { if } \max \left(p_{1}, p_{2}, p_{3}\right)<0.75 \\ & \text { and } p_{1}<p_{2}, p_{3} \\ {[0.5,0,0.5]} & \text { if } \max \left(p_{1}, p_{2}, p_{3}\right)<0.75 \\ & \text { and } p_{2}<p_{1}, p_{3} \\ {[0.5,0.5,0]} & \text { if } \max \left(p_{1}, p_{2}, p_{3}\right)<0.75 \\ & \text { and } p_{3}<p_{2}, p_{1}\end{cases}
$$

Under this formulation, each agent can be considered to send only a discrete symbol to the other agent during communication.

References

Figure 3. Egocentric visualization of S-Comm communication symbol $m_{O \rightarrow N}^{2}$ for vocabulary size 3. The plots show the relative coordinates of the current goal object from A_{N} 's perspective when A_{O} communicates the symbol through S-Comm with vocabulary size three. The navigator agent $\left(A_{N}\right)$ is facing the $+y$ axis and its field-of-view is marked with red lines. Data points are accumulated across all validation episodes, and we plot contour lines of the bivariate density distribution. Each data point is a message with (x, y) coordinates determined from the coordinates of the current goal object in A_{N} 's egocentric reference frame when the message was sent. The six plots on the left are for each communication symbol, and the right-most combines all symbols. Note how each symbol represents distinct regions that are egocentrically organized around the agent.

Figure 4. Egocentric visualization of S-Comm communication symbol $m_{O \rightarrow N}^{1}$ for vocabulary size 3. The plots show the relative coordinates of the current goal object from A_{N} 's perspective when A_{O} communicates the symbol through S -Comm with vocabulary size two. The navigator agent $\left(A_{N}\right)$ is facing the $+y$ axis and its field-of-view is marked with red lines. Data points are accumulated across all validation episodes, and we plot contour lines of the bivariate density distribution. Each data point is a message with (x, y) coordinates determined from the coordinates of the current goal object in A_{N} 's egocentric reference frame when the message was sent. The first three plots are for each communication symbol, and the right-most combines all symbols.

Figure 5. Egocentric visualization of U-Comm communication symbol $m_{O \rightarrow N}^{2}$ for 2-ON. The two plots visualize the value of the first and second element of the message plotted w.r.t. the relative coordinates of the goal object from A_{N}. The navigator agent A_{N} is facing the $+y$ axis and its field-of-view is marked with red lines. The plot on the left corresponds to the $1^{\text {st }}$ dimension of the message, while the plot on the right corresponds to the $2^{\text {nd }}$ dimension. The value of each dimension is indicated by the color hue.

Figure 6. Egocentric visualization of S-Comm communication symbol $m_{O \rightarrow N}^{2}$. First and second row show the case when the goals are distinguishable and indistinguishable by A_{O} respectively. The plots show the relative coordinates of the current goal object from A_{N} 's perspective when A_{O} communicates the symbol through $\mathrm{S}-\mathrm{Comm}$ with vocabulary size two. The navigator agent $\left(A_{N}\right)$ is facing the +y axis and its field-of-view is marked with red lines. Data points are accumulated across all validation episodes, and we plot contour lines of the bivariate density distribution. Each data point is a message with (x, y) coordinates determined from the coordinates of the current goal object in A_{N} 's egocentric reference frame when the message was sent. The first three plots are for each communication symbol, and the right-most combines all symbols. Notice that first row symbols have lesser overlap than the second row symbols.

Figure 7. Example navigation episode with communication message $m_{N \rightarrow O}$ on the agent trajectory for S -Comm. The message $m_{N \rightarrow O}$ is depicted by the color of the arrow symbol at various points on A_{N} 's trajectory on the top-down map. The sequence of maps from top-to-bottom visualizes the trajectory at different points in time. Egocentric observations and map representations at specific agent positions are given to the right of each map. Note the changed communication symbol (from blue agent symbol to green) after the first green goal is found and the agent proceeds to the next black goal.

Figure 8. Example navigation episode with communication message $m_{O \rightarrow N}$ on the agent trajectory for \mathbf{S}-Comm. The message $m_{O \rightarrow N}$ is depicted by the color of the arrow symbol at various points on A_{N} 's trajectory on the top-down map. The sequence of maps from top-to-bottom visualizes the trajectory at different points in time. Egocentric observations and map representations at specific agent positions are given to the right of each map. Note how the communication symbol changes as the relative location of the goal object with respect to the agent changes: when the goal is not ahead of the agent, it is blue; when the goal is ahead of the agent but far away, it is green; and when the goal is in front of the agent, it is orange.

