
A. Appendix

A.1. Architecture details

Encoder φ and SG Predictor h We use ResNet
101 [22] pretrained on ImageNet as the encoder neural
network. We use the Faster R-CNN [44] and Graph
Convolution Network based architecture from Graph
R-CNN [65] to implement the SG Predictor h.

GRL For appearance alignment σa, we use a 2-layer
2D convolution neural network based discriminator with
ReLU activation. For prediction alignment σc,pred we
use 2-layer MLP based discriminator. We also scale the
gradients to the encoder network φ from the discrimi-
nator by a factor of 4 in above cases.

A.2. Experiments

A.2.1 CLEVR

Setup The source and target domains of the
CLEVR [25] environment leverage Blender [9] to ren-
der 320 x 240 images and corresponding ground truth
scene graphs. The source and target domains were
generated using disjoint object colors, object materi-
als, margin between objects, and number of objects,
to ensure a significant domain gap. We use 4 objects
of colors (blue, green, magenta, yellow) and material
(metal) for source domain. We use 2–3 objects of colors
(pink, brown, white) and material (rubber) for target
domain. Additionally, we transform the target by using
a style transfer network 2. For both domains, we sample
each class and their size (small, medium & large) with
equal probability. The environment has three lights
and a fixed camera. We add a small random jitter
to their initial positions during the rendering process.
Some samples of source and target domain are shown
in Figure 7.

Training Details We train our model for 105 iter-
ations with label alignment σc,label and appearance
alignments σa. We optimize the model using a SGD
optimizer with learning rate of 10−4 and momentum of
0.9. We train our model using a batch size 4 on NVIDIA
DGX workstations. We report saturation peak perfor-
mance in all our tables. We give equal regularization
weights to source task loss σs, appearance alignment
σa and label alignment σc,label.

Results More qualitative results of Sim2SG evalu-
ated on the target domain for CLEVR are shown in
Figure 8. We see better recall and fewer false positive

2https://github.com/pytorch/examples/tree/master/fast_
neural_style

object detections leading to more accurate scene graphs.
Label alignment σc,label improves object recall, but occa-
sionally introduces some false positive detections. Our
appearance alignment σa helps in reducing such false
positives as shown in Figure 9. The full quantitative
results of ablation are present in Table 4.

A.2.2 Dining-Sim

Setup The Dining-Sim environment is written using
Pixar’s USD API3 and rendered with a proprietary
renderer. The source domain is rendered with 2 spp
(samples per pixels) followed by denoiser. We select 1
chair (cantilever chair), 1 table (workshop table) and 1
laptop (PC). We randomly place chair and table on the
floor and laptop on the floor as well as on the table with
a random orientation. The asset for each subcategory
is randomly chosen from a list of subcategory specific
ShapeNet [5] assets. We also ensure that objects do not
overlap by applying collision avoidance with simple box
collision volumes. A subset of 4 to 5 simple materials
that vary only in diffuse colour is created for each of the
walls, floor, chair and table. Laptops use the original
asset texture.

The target domain is rendered using path tracing
with 20 spp (samples per pixels) followed by denoiser.
We use 4 chairs (Windsor chair), 1 table (kitchen table)
and 2 laptops (MacBook). We first place the table with
a random orientation and position on the floor. We then
place the four chairs at each side of the table, oriented
towards the table centre. Two laptops are then placed
randomly on the table surface with a random rotation.
The asset for each subcategory is randomly chosen from
a list of subcategory specific ShapeNet [5] assets. For
materials, we use a subset of 4 to 6 physically based,
highly detailed materials for each of the walls, floor,
chair and table. As with the source domain, laptops
use the original asset texture.

Both domains share room parameters: a fixed camera
(60 degree field of view, positioned at far side of the
room) and 3 fixed spherical lights. Samples from the
source and the target domains are shown in Figure 10.
There are five kinds of relationships - front, behind, left,
right, and on with table as subject. We use 5000 labeled
images from source, 5000 unlabeled images from target
for training and 1000 labeled images from both source
& target domains for evaluation. We use 1024 x 768
image resolution for training and evaluation.

Details of Synthesis Step We describe how we gen-
erate synthetic data by inferring scene graphs from tar-
get domain in detail. We filter the objects and relation-

3https://graphics.pixar.com/usd/docs/index.html



So
ur
ce

T
ar
ge
t

So
ur
ce

T
ar
ge
t

So
ur
ce

T
ar
ge
t

Figure 7. Samples from source and target distributions from Clevr environment. Row 1-2: Source and Target differ in both
appearance and content. Row 3-4: Source and Target differ in content but have same appearance. Row 5-6: Source and
Target differ in appearance but have same content.

ships among them using an adaptive threshold (details
in the next paragraph) for the generation. We assume
access to camera parameters (intrinsic and extrinsic
both). We project a ray from the camera through the

pixel corresponding to the bounding box bottom-centre.
The 3D coordinate of the object is then the intersection
of the ray and the ground plane, which we assume to
be flat at elevation 0. We place each object in the 3D



Method mAP@0.5 IoU Recall@20

SDR [41] 0.675 0.339
Ours (σc,label) 0.923 0.646
Ours (σa) 0.938 0.938

Method mAP@0.5 IoU Recall@20

SDR [41] 1.000 0.760
Ours (σa) 0.970 0.722
Ours (σc,label) 1.000 0.996

Table 4. Left (resp. right): Source and target domains have different (resp. similar) appearance but similar (resp. different)
content distribution. All the evaluations are on the target domain.

Figure 8. Qualitative results of Sim2SG on the target domain for CLEVR. First column shows that the SDR [41] fails to
either detect objects or have high number of false positives (mislabels) leading to poor scene graph. Our method detects
objects better, has fewer false positives and ultimately generates more accurate scene graphs as shown in second and third
column respectively. Objects are color coded.

scene by picking a random 3D asset according its type
(class) and assigning random pose in the range 0◦–360◦.
We assume context like ground, wall as described in
the previous paragraph. We refine the 3D scene further
according to the predicted relationships among objects.
For example, we use “on” relationship to refine object
placements by adjusting the object (laptop or chair)
elevation to match the table top. We then render the
3D scene.

Training Details We optimize the model using a
SGD optimizer with learning rate of 10−4 and momen-
tum of 0.9. We train our model using a batch size 2 on
NVIDIA DGX workstations. We report saturation peak
performance in all our tables. We give equal weights to
source task loss σs, appearance alignment σa, prediction
alignment σc,pred and label alignment σc,label.

We first train the model with label alignment σc,label)
for 6 epochs each with 104 iterations and score threshold
of 0.5. Then we add appearance alignment σa and



Figure 9. Appearance alignment σa reducing false positive. Top row: σc,label, bottom row: σc,label + σa

prediction alignment σc,pred and train for an additional
2 × 104 iterations. It takes 12 hours for full training
including rendering time.

Results We present the full quantitative results in
Table 5 and qualitative results in the Figure 11. We
observe that the combination of all alignment terms
σc,label, σa and σc,pred gives the best relationship triplet
recall of 0.547@50. In order to keep our approach as
general as possible, we do not enforce strict rules on
object placements and prefer to randomize parameters
that are not predicted such as orientation as illustrated
in the qualitative results of label alignment σc,label in
Figure 12. When target domain assets are too dissimilar
from the assets in the source domain, it often results
in incorrect reconstructions as shown in Figure 12 (last
column). We also observe that after label alignment
σc,label, the model occasionally has false positive de-
tections, particularly in areas of the floor that have
intricate patterns. We qualitatively show that these
false positives disappear with the addition of appear-
ance alignment σa term (Figure 13).

Ablations We conduct two sets of experiments on the
Dining-Sim environment. The first experiment stud-
ies appearance gap: source domain has different ap-
pearance but similar content from the target domain.
The source domain is generated using the target gen-
eration scheme but using source dataset materials as
shown in Figure 10. The appearance gap because of
photo-realistic texture in target domain is from 0.846
Recall@50 to 0.625 Recall@50. We observe that the ap-
pearance alignment σa helps reduce the appearance gap,
increasing relationship triplet recall from 0.625@50 to
0.821@50. For reference, the oracle performance on the
target domain is 0.846 Recall@50. Similarly, the second
experiment studies content gap where the source and
target use the same materials but have different assets,

object positions and number of objects. We accom-
plish this by modifying the source generation scheme
to select materials from the target dataset. Samples
of source and target are shown in the third and fourth
rows of Figure 10. We observe that the label alignment
σc,label term helps reduce the content gap and increase
relationship triplet recall from 0.468@50 to 0.539@50.
The relatively modest improvement makes sense as the
two domains still differ in content (source and target
domain assets differ). Full results are in Table 6.

A.2.3 Drive-Sim

Setup As mentioned in Section 5.3, we use an Un-
real Engine 44 based driving simulator akin to [41] to
generate synthetic data. We have cars (1-2 per lane),
trees(1-3), houses/buildings(1-3), pedestrians(0-2), side-
walk(2), roads(2-6). We do not have poles, street signs
or any other objects. We have straight roads. We
use realistic random placements, e.g. cars can only be
placed on a lane, pedestrians on sidewalk, houses on
ground and trees on both sidewalk and ground. We
randomize the time of the day, cloud density and use
directional light. We assume real world scale. We place
our camera at a car height on a random right lane with
fixed camera parameters (0 yaw, 0 pitch, 90 fov). We
add realistic texture and color to each object similar
to [41]. We use 1242 x 375 image resolution for training
and evaluation.

Details on Synthesis Step We describe how we
generate synthetic data by inferring scene graphs from
KITTI [20] in detail. During synthesis stage, we infer
the scene graphs from KITTI and further filter the
objects and relationships among them using a confi-
dence threshold of 0.2. We do not have access to KITTI
camera parameters and we use the camera parameters

4https://www.unrealengine.com/



So
ur
ce

T
ar
ge
t

So
ur
ce

T
ar
ge
t

So
ur
ce

T
ar
ge
t

Figure 10. Samples from source and target distributions for Dining-Sim. Row 1-2: Source and Target domains differ in both
appearance and content. Row 3-4: Source and Target differ in content but have same appearance. Row 5-6: Source and
Target differ in appearance but have same content.

Method Chair AP Table AP Laptop AP mAP @0.5 IoU Recall@50

SDR [41] 0.842 ±0.038 0.519 ±0.088 0.392 ±0.051 0.584 ±0.049 0.331 ±0.064

Ours (σc,label) 0.737 ±0.043 0.724 ±0.030 0.608 ±0.047 0.713 ±0.038 0.501 ±0.044

Ours (σc,label, σa, σc,pred) 0.770 ±0.022 0.757 ±0.037 0.659 ±0.005 0.729 ±0.015 0.547 ±0.015

Table 5. Quantitative results of Sim2SG on a target domain in Dining-Sim environment.



Figure 11. Qualitative results of Sim2SG on the target domain for Dining-Sim. First column shows that the SDR [41] fails to
either detect objects or have high number of false positives (mislabels) leading to poor scene graph. Our method detects
objects better, has fewer false positives and ultimately generates more accurate scene graphs as shown in second and third
column respectively. Objects are color coded.

Figure 12. Scenes generated by our method (top) for target samples (bottom) in Dining-Sim environment.

described in the previous paragraph. Using the as-
sumed camera parameters (both intrinsic and extrinsic)
we project a ray from the camera through the pixel

corresponding to the bounding box bottom-centre. The
3D coordinate of the object is then the intersection of
the ray and the ground plane, which we assume to be



Figure 13. Appearance alignment σa reducing false positive. Top row: σc,label, bottom row: σc,label + σa

Method mAP @0.5 IoU Recall@50

SDR [41] 0.772 ±0.043 0.625 ±0.076
Ours (σa) 0.878 ±0.001 0.821 ±0.006

Method mAP @0.5 IoU Recall@50

SDR [41] 0.676 ±0.011 0.468 ±0.006

Ours (σc,label) 0.737 ±0.024 0.539 ±0.006

Table 6. Dining-Sim ablations. Left (resp. right): Source and target domains have different (resp. similar) appearance but
similar (resp. different) content distribution. All the evaluations are on the target domain.

flat at elevation 0. We place each object in the 3D
scene by picking a random 3D asset according its type
(class) and assigning random pose in the range 0◦–360◦
(except cars that are aligned to the lane). We assume
contexts like road, ground, sky, sidewalk as described in
the previous paragraph. We refine the 3D scene further
according to the predicted relationships among objects.
We also assume a consistent lane width, and number
of roads are determined by positions of the detected
vehicles in the scene. We place multiple Trees (i.e. Veg-
etation) if the projected 3D volume permits. We then
render the 3D scene.

Training Details We optimize the model using a
SGD optimizer with learning rate of 10−4 and momen-
tum of 0.9. We train our model using a batch size 2
on NVIDIA DGX workstations. We report saturation
peak performance in all our tables. We give equal reg-
ularization weights to source task loss σs, appearance
alignment σa, prediction alignment σc,pred and label
alignment σc,label.

We first train our model using label alignment
σc,label) for 3 epochs each with 104 iterations. We then
add appearance alignment σa and prediction alignment
σc,pred and train for an additional 60k iterations. This
makes sense as σa works better when content/labels are
aligned between the two domains. The total training
takes 12 hours including the rendering time.

Baselines: We adapt domain adaptation base-
lines [7, 64] to our framework by using the same back-
bone (Resnet 101) and SG Predictor (GraphRCNN [65])

network as Sim2SG, but their loss function. We do not
adapt SAPNet [30]. We train these baselines on 6000
images from the source domain [41] using the same
optimizer and learning rate as Sim2SG for 6× 104 itera-
tions. We found GPA [64] and SAPNet [30] detection
performance to be lower than that reported in their
work especially for pedestrian, vegetation and house
classes. It is worth noting that their reported class-wise
performance numbers only overlap with some of the
classes in our work.

We train [27] for 40 epochs with a batch size of 16
and learning rate 0.001 as per the authors. We then
obtain 6000 images and train it on Sim2SG framework
(Resnet 101 backbone and GraphRCNN SG predictor)
for 6 × 104 iterations using the same optimizer and
learning rate as Sim2SG. For self-learning based on
pseudo labels [72], we obtain the pseudo labels on KITTI
images using the most confident predictions by synthetic
pretrained GraphRCNN network (as per the authors).
We then train these labeled KITTI images on Sim2SG
framework for 60k iterations using the same optimizer
and learning rate as Sim2SG.

KITTI Annotation We use the existing bounding
box annotations of Vehicle and Pedestrians. We anno-
tate Trees and Houses/Buildings of all sizes, occlusion
and truncation in KITTI. We use the available camera
parameters to project the 2D bounding box into 3D
space to help us annotate spatial relationships–front,
behind, left and right.



Method Car Pedes. House Veg. mAP Recall@50

SDR [41] 0.488 ±0.007 0.214 ±0.025 0.223 ±0.022 0.177 ±0.010 0.276 ±0.005 0.112 ±0.009
Meta-Sim [27] 0.575 ±0.008 0.227 ±0.024 0.252 ±0.008 0.174 ±0.033 0.307 ±0.003 0.143 ±0.007
Self-learning [72] 0.466 ±0.009 0.215 ±0.016 0.189 ±0.025 0.265 ±0.008 0.284 ±0.006 0.129 ±0.006
DA-FasterRCNN [7] 0.523 ±0.036 0.209 ±0.038 0.203 ±0.037 0.171 ±0.012 0.277 ±0.017 0.119 ±0.022
GPA [64] 0.248 ±0.053 0.016 ±0.026 0.097 ±0.030 0.063 ±0.031 0.109 ±0.022 0.028 ±0.009
SAPNet [30] 0.420 ±0.052 0.124 ±0.035 0.018 ±0.004 0.042 ±0.010 0.151 ±0.010 –
Ours (σc,label) 0.566 ±0.033 0.310 ±0.029 0.261 ±0.009 0.242 ±0.040 0.345 ±0.002 0.193 ±0.010

Ours (σc,label, σa) 0.606 ±0.021 0.309 ±0.013 0.272 ±0.008 0.260 ±0.021 0.362 ±0.007 0.220 ±0.010

Ours (σc,label, σa, σc,pred) 0.623 ±0.033 0.301 ±0.018 0.283 ±0.007 0.274 ±0.015 0.370 ±0.005 0.240 ±0.003

SDR 0.412 ±0.006 0.174 ±0.018 0.215 ±0.022 0.177 ±0.011 0.245 ±0.002 0.085 ±0.008
Meta-Sim 0.455 ±0.040 0.203 ±0.026 0.242 ±0.009 0.176 ±0.029 0.269 ±0.007 0.093 ±0.005
Self-learning 0.377 ±0.007 0.174 ±0.014 0.197 ±0.002 0.263 ±0.006 0.253 ±0.004 0.077 ±0.005
DA-FasterRCNN 0.472 ±0.028 0.181 ±0.031 0.203 ±0.041 0.168 ±0.013 0.256 ±0.012 0.091 ±0.019
GPA 0.201 ±0.043 0.016 ±0.026 0.106 ±0.031 0.065 ±0.036 0.096 ±0.026 0.018 ±0.007
SAPNet 0.419 ±0.068 0.098 ±0.028 0.017 ±0.005 0.038 ±0.008 0.143 ±0.017 –
Ours (σc,label) 0.471 ±0.033 0.273 ±0.027 0.244 ±0.010 0.233 ±0.036 0.305 ±0.006 0.128 ±0.008

Ours (σc,label, σa) 0.511 ±0.002 0.266 ±0.014 0.251 ±0.013 0.256 ±0.021 0.321 ±0.004 0.155 ±0.005

Ours (σc,label, σa, σc,pred) 0.529 ±0.029 0.249 ±0.017 0.262 ±0.011 0.270 ±0.015 0.328 ±0.007 0.170 ±0.004

SDR 0.382 ±0.029 0.168 ±0.017 0.211 ±0.023 0.174 ±0.010 0.234 ±0.006 0.070±0.007
Meta-Sim 0.413 ±0.009 0.197 ±0.027 0.236 ±0.009 0.164 ±0.023 0.253 ±0.003 0.075 ±0.005
Self-learning 0.312 ±0.006 0.167 ±0.015 0.191 ±0.003 0.263 ±0.006 0.233 ±0.004 0.062 ±0.003
DA-FasterRCNN 0.424 ±0.028 0.170 ±0.029 0.200 ±0.041 0.169 ±0.014 0.241 ±0.014 0.074 ±0.015
GPA 0.174 ±0.040 0.011 ±0.016 0.106 ±0.031 0.059 ±0.027 0.087 ±0.020 0.015 ±0.005
SAPNet 0.362 ±0.054 0.085 ±0.051 0.116 ±0.021 0.067 ±0.022 0.157 ±0.024 –
Ours (σc,label) 0.410 ±0.009 0.262 ±0.025 0.240 ±0.010 0.229 ±0.036 0.285 ±0.003 0.104 ±0.006

Ours (σc,label, σa) 0.493 ±0.004 0.252 ±0.014 0.247 ±0.012 0.253 ±0.020 0.311 ±0.311 0.127 ±0.004

Ours (σc,label, σa, σc,pred) 0.501 ±0.006 0.241 ±0.018 0.254 ±0.010 0.269 ±0.014 0.316 ±0.004 0.139 ±0.004

Table 7. Evaluation on three modes of KITTI : easy (top), moderate (middle), hard (bottom) when training on the labeled
synthetic data and unlabeled real data. The class specific AP and mAP are reported at 0.5 IoU.

Method Recall@20 Recall@50 Recall@100

SDR 0.098 0.131 0.146
Meta-Sim 0.109 0.149 0.164
Ours (σc,label, σa, σc,pred) 0.184 0.235 0.252

SDR 0.067 0.088 0.099
Meta-Sim 0.071 0.094 0.104
Ours (σc,label, σa, σc,pred) 0.132 0.167 0.181

SDR 0.053 0.071 0.079
Meta-Sim 0.058 0.076 0.085
Ours (σc,label, σa, σc,pred) 0.107 0.137 0.150

Table 8. Recall on three modes of KITTI : easy (top), mod-
erate (middle), hard (bottom) when training on the labeled
synthetic data and unlabeled real data. The evaluation is
performed once.

Results Full quantitative evaluations results are in
Table 7 on all KITTI [20] evaluation criteria– easy,
moderate and hard. In all three criteria, Sim2SG is able
to achieve significantly better results (higher detection
mAP @0.5 IoU and relationship triplet recall @ 50) than
all the baselines. We also report recall @20, 100 for few
baselines and our approach in Table 8. More qualitative
results of label alignment σc,label is in Figure 14. We
show qualitative improvements (better object recall and
fewer false positive detections) over SDR [41] and Meta-
Sim [27] in Figure 15 and the corresponding accurate
and full scene graphs in Figure 16.



Figure 14. Scenes generated by our method (left) for target KITTI samples (right).



Figure 15. Qualitative results of objects detected on three different KITTI images. Top: SDR fails to detect many objects and
yields a large number of false positives (mislabels), leading to poor scene graphs (not shown). Middle: Meta-Sim improves on
false-positives, but still fails to detect some objects. Bottom: Our method detects objects correctly with fewer false positives,
thus generating more accurate scene graphs. (Cars in green, vegetation in yellow, buildings in purple.)



Figure 16. Qualitative results of Sim2SG on KITTI. Sim2SG generates accurate scene graphs.


