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1. t-SNE Analysis for AADA

We give experimental evidence of the redundancy issue
present in the AADA sampling. We perform the training
with VAADA training method with the implementation de-
tails present in Sec. 6 on Webcam → Amazon. Fig. 1
shows the selected samples in the intermediate cycle, which
clearly depicts clusters of the samples selected. The ex-
istence of clusters confirms the presence of redundancy in
selection.

Figure 1. t-SNE analysis of AADA sampling. The selected sam-
ples are represented by the red boxes. We see clusters of samples
being selected which depict redundancy in selection.
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2. Proofs
2.1. Lemma 1

We present proof for lemma 1 which is stated in Section
4.1.4 of the main paper.

Lemma 1 The set function f(S) defined by equation be-
low is submodular.

f(S ∪ {xi})− f(S) = αV AP (xi) + βd(S, xi)

+ (1− α− β)R(S, xi)

We first prove that all the three individual components
in the above expression are submodular and then prove that
the convex combination of the three terms is submodular.

Submodularity of the VAP Score V AP (xi): The gain
value of the VAP score is given as the following below:

f(S ∪ {xi})− f(S) = V AP (xi)

We give below the proof for the submodularity which is
based on the diminishing returns property as stated in Sec.
3.1, in the main text.

Proof. For two sets S1, S2 such that S1 ⊆ S2 and xi ∈
Ω\S2, if the function is submodular it should satisfy the
following property in Sec 3.1.

f(S1 ∪ {xi})− f(S1) ≥ f(S2 ∪ {xi})− f(S2)

V AP (xi) ≥ V AP (xi)

As the left hand side is equal to right hand side, the inequal-
ity is satisfied, hence the VAP score function is submodu-
lar.

Submodularity of Diversity Score d(S, xi): The gain
in value for the diversity function is given as:

f(S ∪ {xi})− f(S) = min
x∈S

D(x, xi)

We provide the proof that the above gain function corre-
sponds to a submodular function f(S) below:

Proof. For two sets S1, S2 such that S1 ⊆ S2 and xi ∈
Ω\S2, if the function is submodular it should satisfy the
following property in Sec 3.1:

f(S1 ∪ {xi})− f(S1) ≥ f(S2 ∪ {xi})− f(S2)

minx∈S1
D(x, xi) ≥ minx∈S2

D(x, xi)

D(x, xi) ≥ 0 for every x and xi as it is a divergence func-
tion. As S2 contains more elements than S1, the minimum
of D(x, xi) will be less then for S2 in comparison to that of
S1. Hence the final inequality is satisfied which shows that
f(S) is submodular.

Submodularity of Representativeness Score R(S, xi):
We first prove one property which we will use for analysis
of Representativeness Score.
Property: The sum of two submodular set functions f(S) =
f1(S) + f2(S), is submodular.

Proof. Let A and B be any two random sets.

f(A) + f(B) = f1(A) + f2(A) + f1(B) + f2(B)

≥ f1(A ∪B) + f2(A ∪B) + f1(A ∩B)+

f2(A ∩B)

= f(A ∪B) + f(A ∩B)

Hence the sum of the two submodular functions is also sub-
modular. The result can be generalized to a sum of arbitrary
number of submodular functions.

The representativeness score can be seen as the following
set function below:

f(S) =
∑

xi∈Du

max
xj∈S

sij

We calculate the gain for each sample through this function
which is equal to R(S, xi):

f(S ∪ {xi})− f(S) =
∑

xk∈Du

max
xj∈S∪{xi}

skj −
∑

xk∈Du

max
xj∈S

skj

R(S, xi) =
∑

xk∈Du

max(sik −max
xj∈S

skj , 0)

Property: The set function defined below is submodular:

f(S) =
∑

xi∈Du

max
xj∈S

sij

Proof. We first show that the function fi(S) = max
xj∈S

sij

is submodular. We first use the property, f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) where A,B are two sets, sufficient
to show that f(S) is submodular:

fi(A) + fi(B) ≥ fi(A ∪B) + fi(A ∩B) (1)
max
xj∈A

sij + max
xj∈B

sij ≥ max
xj∈A∪B

sij + max
xj∈A∩B

sij (2)

which follows due to the following:

max(max
xj∈A

sij ,max
xj∈B

sij) = max
xj∈A∪B

sij

and
min(max

xj∈A
sij ,max

xj∈B
sij) ≥ max

xj∈A∩B
sij
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As fi(S) is submodular, the f(S) can be seen as:

f(S) =
∑

xi∈Du

fi(S)

which is submodular according to the property that
sum of submodular functions is also submodular proved
above.

Combining the Submodular Functions: We use the
property that a convex combination of the submodular func-
tions is also submodular. Hence our sampling function
which is the convex combination given by:

f(S ∪ {xi})− f(S) = αV AP (xi) + βd(S, xi)

+ (1− α− β)R(S, xi)

Also follows the property of submodularity.

2.2. Lemma 2

Here we present proof of lemma 2 stated in Sec. 4.1.4 of
main paper.
Lemma 2 The set function f(S) defined by equation below
is a non-decreasing, monotone function:

f(S ∪ {xi})− f(S) = αV AP (xi) + βd(S, xi)

+(1− α− β)R(S, xi)

Proof. For the function to be non-decreasing monotone for
every set S the addition of a new element should increase
value of f(S). The gain function for f(S) is given below:

f(S ∪ {xi})− f(S) ≥ 0

αV AP (xi) + βd(S, xi) + (1− α− β)R(S, xi) ≥ 0

As the V AP (xi) and d(S, xi) are KL-Divergence terms,
they have value ≥ 0. The third term R(S, xi) =∑
xk∈Du

max(sik−max
xj∈S

skj , 0) is also ≥ 0. As 0 ≤ α, β, α+

β ≤ 1, the value of gain is positive, this shows that the func-
tion f(S) is a non-decreasing monotone.

2.3. Theorem 1

Theorem 1: Let S∗ be the optimal set that maximizes the
objective in Eq. 3 then the solution S found by the greedy
algorithm has the following approximation guarantee:

f(S) ≥
(
1− 1

e

)
f(S∗) (3)

Proof: As f(S) is submodular according to Lemma 1 and
is also non decreasing, monotone according to Lemma 2.
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Figure 2. Analysis of S3VAADA for different budget sizes on We-
bcam → Amazon shift of Office-31 dataset.

Hence the approximation result directly follows from The-
orem 4.3 in [8]. The approximation result shows that the
algorithm is guaranteed to get at least 63% of the score of
the optimal function f(S∗). However, in practice, this al-
gorithm is often able to achieve 98% of the optimal value in
certain applications [5]. As it’s a worst case result in prac-
tice we get better performance than the worst case.

3. Insight for Diversity Score
When the α = 0 and β = 1 the gain function f(S ∪

{xi}) − f(S) is just minx∈SD(x, xi). The greedy algo-
rithm described for sampling in Algorithm 1 in main paper,
leads to following objective for selecting sample x∗.

x∗ = argmax
xi∈Du\S

min
x∈S

D(x, xi)

This objective exactly resembles the K-Center Greedy
method objective which is used by Core-Set method [13]
and is shown to select samples which cover the entire
dataset. The K-Center Greedy method is very effective in
practice. This connection shows that diversity component
in our framework also tries to cover the dataset as done by
Core-Set [14] method which is one of the very effective di-
versity based active learning method.

4. Additional Analysis for S3VAADA
In this sections we provide additional experiments for

analysis of the proposed S3VAADA. Unless specified, we
run the experiments with single random seed and report the
performance. In case the performance difference is small,
we provide average results of three runs with different ran-
dom seeds.

4.1. Budget Ablation

Keeping in mind the practical constraint of only having
a small amount of labeling budget in the target domain, we
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Figure 3. Active DA performance on Webcam → Amazon for
30 cycles. We find that the performance converges to supervised
learning performance after around 15 cycles.

restrict ourselves to having a budget size of 2% of the la-
beled target data. Due to different size of target data in
each dataset, the sampling algorithm needs to work robustly
under different budget scenario’s. For further analysis, we
provide results on Webcam to Amazon with different bud-
get sizes B for sampling in Fig. 2. We find that S3VAADA
is quite robust for budget sizes greater than 45. We find
that small budget of 25 results in more stochasticity in the
results.

4.2. Convergence: When does the Active DA per-
formance stop improving?

In all the experiments, we have used a budget of 2% for
5 rounds which corresponds to 10% of the target dataset.
We find that the performance of algorithm improves in ma-
jority of cycles. This brings up the question, When does the
performance of the model stop improving even after adding
more labeled samples?. For answering this question, we
perform experiments on Webcam → Amazon and perform
active DA for 30 rounds. Fig. 3 shows the results on We-
bcam → Amazon with S3VAADA and Random sampling.
It can be seen that after around 15 cycles, the gains due to
additional samples being added decrease significantly and
the performance seems to converge. The performance of
the proposed S3VAADA is much better than random sam-
pling in all the rounds. It must also be noted that S3VAADA
reaches an accuracy of 89% with 20 rounds (40% of the
dataset) which is equal to the performance when trained on
all the target data.

5. Analysis of VAADA training

We propose VAADA method which is an enhanced ver-
sion of VADA, suitable for Active DA. We find that pro-
posed improvements in VAADA have a significant effect on
the final active DA performance, which we analyse in detail
in the following sections. We have done all our analysis us-

ing source dataset as Webcam and target dataset as Amazon
which is a part of Office-31.

5.1. Analysis of Learning Rate

It is a common practice [4, 6] in domain adaptation (DA)
to use a relatively lower learning rate (usually decreased by
a multiplying a factor of 0.1) for convolutional backbone
which is ResNet-50 in our case. We find that though this
practice helps for Unsupervised DA performance, it was not
useful in the case of Active DA. In Fig. 4, we show the com-
parison of using same learning rate for the backbone net-
work (as proposed in VAADA), to using a smaller learning
rate for backbone. The results clearly show that not lower-
ing the learning is specially helpful for Active DA, whereas
it is not for Unsupervised DA.

0 45 90 135 180 225
Number of Labeled Samples

65

68

71

74

77

80

83

Ta
rg

et
 A

cc
ur

ac
y 

(in
 %

)

Webcam  Amazon

Low Learning Rate 
for Feature Extractor
Same Learning Rate 
for all

Figure 4. Comparison between Active DA with lower learning rate
and a higher learning rate for backbone. The results are the average
across three runs with different random seeds.

5.2. Analysis of using Gradient Clipping

In the original implementation of VADA [15] the au-
thors use the method of Exponential Moving Average
(EMA) (also known as Polyak Averaging [11]) of model
weights, which increases the stability of results. In place
of EMA, we find that using proposed Gradient Clipping in
VAADA works better for stabilizing the training. In Gra-
dient Clipping, we scale the gradients such that the gradi-
ent vector norm has magnitude 1. We find that Gradient
Clipping allows the network to train stably, with a relatively
high learning rate of 0.01. For showcasing the stabilising
effect of Gradient Clipping, in Fig. 5 we compare the per-
formance of the model with and without gradient clipping.
We find that Gradient Clipping leads to a increase of ac-
curacy of above 10% for each active learning cycle, with
achieving stable increase in performance with the addition
of more labels. On the other hand the model without clip-
ping is unable to produce stable increase in performance
with addition of labels.
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Figure 5. Ablating Gradient clipping on VAADA

5.3. Comparison of VADA with VAADA

In this section we provide additional implementation de-
tails and analysis, continuing from Sec. 6 of main paper.
The comparison shown with the VADA method corresponds
to the original VADA configuration specified in [15]. In the
original implementation, the authors propose to use Adam
optimizer and EMA for training. We use Adam with learn-
ing rate of 0.0001 and use the exact same settings as in
[15]. It can be seen in Fig. 6 that VAADA consistently out-
performs the VADA training in Active DA for CoreSet and
S3VAADA as well.
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Figure 6. We show the comparison of VAADA and VADA. We see
consistent improvement of VAADA over VADA across all cycles.

5.4. Visualizing clusters using t-SNE

In this section, we analyse the t-SNE plot (Fig. 7) of the
two different training methods i.e., DANN and VAADA.
We find that in VAADA training, there is formation of dis-
tinct clusters and also the cluster sizes are similar. Whereas
in DANN t-SNE, there is no formation of distinct clus-
ters, and a large portion of sample are clustered in between.
This shows that additional losses of conditional entropy and
smoothing through Virtual Adversarial Perturbation loss are
necessary to enforce the cluster assumption.

5.5. Hyper-Parameter Sensitivity of VAADA

We used the same λ values mentioned as a robust choice
by VADA [15] authors, for VAADA training, setting λd =
0.01, λs = 1 and λt = 0.01 across all datasets. For
analysing the sensitivity of the performance of VAADA
across different hyper-parameter choices, we provide re-
sults with varying λ parameters in Fig. 8. We also find
that the robust choice recommended for VADA, also works
the best for VAADA. Hence, this fixed-set of robust λ pa-
rameters can be used across datasets with varying degree of
domain shifts. This is also enforced by the fact, that in all
our experiments these fixed hyperparameters were able to
achieve state-of-the-art performance across datasets. This
decreases the need for hyper-parameter tuning specific to
each dataset.

6. Implementation Details

6.1. Configuration for DANN

For the DANN experiments, we use a batch size of 36
with a learning rate of 0.01 for all the linear layers. We
use a smaller learning rate of 0.001 for the ResNet-50 back-
bone. DANN is trained with SGD with a momentum of 0.9
and weight decay value of 0.0005 following the schedule
described in [4]. The model architecture and hyperparam-
eters are same as in [6]. The model is trained for 10,000
iterations as done in [6] and the best validation accuracy is
reported in the graphs.

6.2. Configuration for SSDA (MME*)

We use the author’s implementation1 for experiments on
Office dataset. We used ResNet-50 as backbone and used
same parameters as used in their implementation. For Ac-
tive DA, we initially train the model with no labeled target
data and keeps on adding 2% of the unlabeled target data
to labeled target set for 5 cycles. We train the model for
20,000 iterations. A similar procedure of reporting the best
validation accuracy on the fixed validation set, as done for
other baselines is followed.

6.3. Configuration for VAADA

The model is trained with a batch size of 16 and a learn-
ing rate of 0.01 for all the layers using the SGD Optimizer
with a momentum of 0.9. A weight decay of 0.0005 was
used. The model is trained for 100 epochs and the best ac-
curacy is reported in the graphs. A ResNet-50 backbone is
used with pretrained ImageNet weights. The architecture
for various model components used are shown in Table 1
and 2. Same architecture is used for all experiments in the
paper.

1https://github.com/VisionLearningGroup/SSDA MME
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(a) DANN (b) VAADA

Figure 7. Visualization of clusters of data points formed by DANN and VAADA on DA for Webcam → Amazon. Different colors represent
different classes. It can seen that VAADA forms much distinct clusters data than DANN.
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Figure 8. Different Hyperparameters on Webcam → Amazon
dataset.

Layer/Component Output Shape
- 224 × 224 × 3

ResNet-50 2048
Linear 256

Table 1. Feature Generation gθ: Architecture used for generating
the features

The above hyper parameters are used for all our exper-
iments on Office-Home and Office-31 datasets. We just
change the batch size to 128 and use the learning rate decay

Layer Output Shape
Feature Classifier (fθ)

- 256
Linear C
Domain Classifier (Dϕ)

- 256
Linear 1024
ReLU 1024
Linear 1024
ReLU 1024
Linear 2

Table 2. Architecture used for feature classifier and Domain clas-
sifier. C is the number of classes. Both classifiers will take input
from feature generator (gθ).

schedule of DANN for experiments on VisDA-18 dataset.

L(θ;Ds,Dt,Du) = Ly(θ;Ds,Dt) + λdLd(θ;Ds,Dt,Du)

+λsLv(θ;Ds ∪ Dt) + λt(Lv(θ;Du) + Lc(θ;Du))

The ϵ used in Eq. 3 and 4 in the main paper refer to the
maximum norm of the virtual adversarial perturbation, was
set it to 5 in our experiments. The value of the number of
random restarts (N ) to generate virtual adversarial pertur-
bation for the proposed sampling is set to 5. The α value is
set to 0.5 and β value is set to 0.3 across all experiments.
We use Gradient Clipping to clip the norm of the gradient

6



vector to 1 to stabilize and accelerate VAADA.
We used Weights & Biases [1] to track our experiments.
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Figure 9. S3VAADA vs. JO-TAL

7. Comparison with JO-TAL
We compare our results with JO-TAL by Chattopadhyay

et al. [2] (by implementing in cvxopt). JO-TAL performs
both active learning and domain adaptation in a single step.
Since, JO-TAL was not proposed in the context of deep
learning, we use deep features from ImageNet pretraind
model and train an SVM classifier on top of them. The
optimization problem was implemented in cvxopt. Fig. 9
shows S3VAADA achieves significant performance gains
across cycles when compared to JO-TAL.

8. Comparison with Alternate Adversarial Per-
turbation based sampling

There also exists a sampling method [3] based on
DeepFool adversarial perturbations [7] Active Learning
(DFAL) but due to its higher complexity and computa-
tion time, it was unfeasible for us to use it as a base-
line for all experiments. We provide the comparison of
DFAL with S3VAADA in terms of accuracy on Active DA
from Webcam → Amazon in Fig. 10. Training is done
through VAADA for both sampling methods. We find
that S3VAADA significantly outperforms DFAL sampling
achieving better results in all cycles.

9. Description of Datasets Used
Office-31 [12]: It has images from 3 domains i.e., Web-

cam, DSLR and Amazon, belonging to 31 classes.
Office-Home [16]: This dataset has a more severe do-

main shift across domains compared to Office-31. It is a 65
class dataset and contains images from 4 domains namely,
Art, Clipart, Product and Real World.

VisDA-18 [10]: This dataset consist of images from syn-
thetic and real domains. The dataset has annotations for
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Figure 10. S3VAADA outperforms DFAL in all the cycles, even
though both attain same initial accuracy. It shows that S3VAADA
selects much more informative samples compared to DFAL.

(a) Webcam (b) DSLR

(c) Amazon

Figure 11. Some Office-31 Dataset examples

(a) Art (b) Product

(c) Clipart (d) Real World

Figure 12. Some Office-Home Dataset examples

for two tasks: image classification and image segmentation.
We used dataset of image classification task. It has 12 dif-
ferent object categories.

Some example images of each dataset are shown in Figs.
11, 12 and 13.
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(a) Real (b) Synthetic

Figure 13. Some Visual DA (VisDA-18) Dataset examples
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Figure 14. Active Domain Adaptation results on Clipart → Sketch
dataset. This shows the proposed method is scalable to larger
datasets.

10. DomainNet Experiments
DomainNet [9] consists of about 0.6 million images be-

longing to 345 classes. The images belong to 5 domains:
Clipart, Sketch, Quickdraw, Painting, Real. For showing
the scalability of our method, we use Clipart as the source
and Sketch as the target domain. The Clipart domain con-
sists of 33,525 images in the train set and 14,604 images in
the test set. The Sketch domain consists of 50,416 images
in the train set and 21,850 images in the test set. Due to
computational limitations we are not able to provide results
on different possible domains.

For the DomainNet experiments, we use a batch size of
36 with a learning rate scheduler same as DANN and run
each baseline for 30 epochs. We use Gradient Clipping and
clip the norm to 10. In this case we find that performance of
S3VAADA does not stagnate at 30 epochs but due to lim-
itations of compute we only train for 30 epochs. Hence,
there exist scope for improvement in results with parameter
tuning and more computational budget.

Fig. 14 shows the results on Clipart → Sketch domain
shift. The performance of S3VAADA outperforms all the
other techniques in all the cycles. This shows that the effi-
cacy of the proposed method on a large dataset containing
345 classes.

11. Future Extension to Other Applications
The S3VAADA technique is based on the idea of clus-

ter assumption i.e., aligning of clusters of different classes,

which is used in the sampling method. Some recent DA
techniques for Object Detection [18] and Image Segmen-
tation [17] which aim for classwise alignment of features,
can be seen as methods which satisfy the cluster assump-
tion. Hence, we hope that combining such techniques with
our method can yield good Active DA techniques tailored
for these specific applications. In the current work, we fo-
cused on diverse image classification tasks, leaving these
applications for future work.
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