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In this document, we provide additional details on our
system architecture, expand on the ablation studies of the
main text, and provide additional results for the D4DCT
and thoracic data. Additionally, we present attached videos
showing dynamic reconstructions of our method compared
with baselines. Finally, we show videos that demonstrate
our ability to upsample scenes in space and time post-
optimization.

1. INR Architecture: Additional Details

Network Architecture: As discussed in the main text, we
use a neural network as our implicit neural representation
(INR) of the scene’s volume template. We illustrate the im-
plementation of our network in Figure 1. The architec-
ture is comprised of four fully-connected layers that map
the Fourier features of input coordinates to a template vol-
ume. We use a Swish [2] activation between intermediate
network layers and a sigmoid activation at the final layer’s
output to normalize the scene LACs.

GRFF Details: As discussed in the main text, we use
Gaussian random Fourier features (GRFF) [3] at the in-
put of our INR. Let v = (x, y, z) be a coordinate
from the input grid. Its GRFF is computed as γ(v) =
[cos (2πκBv), sin (2πκBv)], where cos and sin are per-
formed element-wise; B is a vector randomly sampled from
a Gaussian distributionN (0, I), and κ is the bandwidth fac-
tor which controls the sharpness of the output from the net-
work. We compute 512 Fourier features for each voxel.
As such, each layer of the network has 512 input chan-
nels. At each iteration of the optimization, we randomly
sample coordinates within 803 voxels, compute 512 fea-
tures per voxel, and query the network for the scene’s lin-
ear attenuation coefficient (LAC) at each input coordinate.

Post-optimization, we can upsample the scene by inputting
a finer gird of coordinates (e.g., 2563) to the network.

Parameter Ablations: The bandwidth of the Fourier fea-
tures κ regularizes our INR output. As shown in the right
plot of Figure 2, choosing an appropriate value for κ helps
to ensure a quality reconstruction. If κ is too low, the re-
construction is unable to fit high frequency content such as
edges, decreasing the PSNR performance. Alternatively, if
κ is too high, the reconstruction begins to distort with high
frequency artifacts, also decreasing the PSNR performance.
This tradeoff is illustrated by the upside down V shape of
the right plot of Figure 2 — there is a clear optimum for the
κ value against PSNR performance.

2. Motion Field: Additional Details

Coarse-to-fine: We use a motion field to warp the INR’s
predicted scene template into a sequence of frames. We
define a tensor C ∈ Rβ3×k×3. This tensor contains k poly-
nomial coefficients at each scene voxel in β3 in the 3 spa-
tial dimensions (x, y, z). Next, we define N time samples
linearly spaced within [0, 1] where N is the number of an-
gular measurements as ti=0···N−1. To warp a voxel to a
specific time ti, we compute the polynomial W (C, ti) =

C0t
0
i + C1t

1
i · · ·Ckt

k
i , where W (C, ti) ∈ Rβ3×3 is the

warp field of the scene at ti, and Ck is C(:, k, :). In the
left plot of Figure 2, we show that increasing the polyno-
mial order k past 2− 5 has limited effect on reconstruction
quality. For all of our reconstruction experiments, we use a
polynomial of order 5.

We observe that estimating our warp field at the full res-
olution results in supbar motion estimates, and introduce
a coarse-to-fine optimization procedure for learning warp
field parameters. We start our motion field at a resolution
α such that Cα ∈ Rα3×k×3 where α < β. We iteratively
increase α throughout training and use linear upsampling to
progressively grow our warp field like Cαi+1

= U(Cαi
)
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Figure 1: Illustration of our network architecture. We utilize fully connected layers that map input coordinates to a volume
template that is warped by the motion field.
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Figure 2: Left: The effect of motion field polynomial order on the reconstruction PSNR. Right: The effect of
the Fourier feature bandwidth κ on reconstruction PSNR.
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Figure 3: Effect of the total variation loss on the motion field. Notice that with the loss we resolve a smoother
surface on the reconstructed object. We also notice cleaner reconstruction of the object edges as shown by 2D
object slice in the bottom right corner of the tiles.

where U : Rα3
i 7→ Rα

3
i+1 . For our experiments, we initial-

ize the field as a 23 volume at the start of optimization and
upsample by a powers of 2 (e.g., 23, 83, · · · , 643) every 100
iterations. We note that the motion field is upsampled with a
trilinear interpolation to the full volume resolution (803) in

order to warp each voxel of the template volume. In Figure
4 we provide an example of a typical progression in recon-
struction quality during the optimization. For the D4DCT
and thoracic datasets, we run our optimization for 700 and
1200 iterations, respectively.
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Figure 4: Progression of object reconstruction over 700 iterations. In each tile, the object (alum. #2) is shown
at the first time step (T = 0.00).

Motion Field Total Variation: The weights of the INR
and the coefficients of the parametric motion field are up-
dated via gradient descent to minimize our loss function

min
φ,C

λ1
∣∣∣∣Rθ(t)(σ(x, y, z, t)−Rθ(t)(GT )∣∣∣∣1

+λ2TV(C), t ∈ [0, 1].
(1)

In Figure 3 we show the impact of total variation term
on the reconstruction performance. We notice that adding
the regularization term boosts PSNR and reconstructs a
smoother surface on the reconstructed object at each time
step. In implementation, we normalize the total variation
loss by the number of parameters in our motion field at each
growing stage.

Visualizing the Motion Field: In Figure 5 we illustrate
slices of the optimized motion field for object alum. #1 in
time. Motion in the (x, y, z) direction is encoded as RGB
colors. For this aluminum object, shown in Figure 9d, a
laterally moving plate compresses a center cube against an-
other plate. As shown in the bottom row of Figure 5, the
green channel increases in intensity along the moving plate,
indicating motion of the plate in the y direction. The middle
row demonstrates this same motion in the y direction within
the xz plane. The top row shows the center of the aluminum
object deforming, as we see blue and red colors indicating
deformation in the z and x directions.

3. Additional Results and Reconstruction
Videos

D4DCT Dataset: We provide additional 4D reconstruc-
tions from our D4DCT dataset in Figure 9. We observe
that our method reconstructs the geometry of the object at
each of the 10 ground truth frames. However, our algorithm
is not perfect and sometimes adds high frequency artifacts

Number of Projections 90 45 30 18 10
PSNR (dB) 22.73 21.54 19.91 19.46 17.24

Table 1: Average Reconstruction PSNR of 10 frames for
Object (Alum. 1) against the number of uniform projections
taken within 180 degrees. Our algorithm’s performance re-
mains robust to a limited number of projections such that
our reconstruction using only 10 projections outperforms
baseline methods using 90 projections.

on the objects. This said, our method drastically outper-
forms baseline methods in average frame PSNR (Table 1 in
main text) and qualitatively. In Figure 8, we provide visu-
alizations of our method versus baseline reconstructions on
objects alum. #3-6. Additionally, we attach two videos,
alum1.mp4 and alum2.mp4, showing comparisons of our
method to baselines. In these videos, we observe that our
method captures the geometry and deformation of the alu-
minum object. Baseline methods [1] and [4] reconstruct
only rough estimations of the aluminum object at each time
frame because of the limited angle sampling scheme.

In Table 1, we compute the reconstruction performance
of our algorithm against a range of equiangular measure-
ments within 180 degrees. Our algorithm retains reasonable
frame PSNR with as few as 10 projections within a limited
view. Specifically, our algorithm reconstructs object (alum.
# 1.) at a higher PSNR from 10 projections than both base-
line methods which used 90 projections (see Table 1 of main
text for baseline PSNR scores).

Additional Results on Thoracic CT Data: In Figure 7
we show our reconstruction of the 10 breathing phases for
the thoracic data. We achieve sharp reconstructions of the
ground truth volume at each breathing phase. Since motion
can be difficult to observe in these static images, we encour-
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Figure 5: Motion field visualization in time for object alum #1. We encode the intensity of motion in the
(x, y, z) direction as (RGB). The bottom two rows show a plate moving in the y direction over time, indicated
by the green color. The top row shows the object deforming into the x and z directions indicated by the blue
and red colors.
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Figure 6: More sparsely sampled projections
results in better reconstruction performance
for ours and SOA method TIMBIR [1]. Here
we show the PSNR and visual difference of
reconstructing with 90 uniform projections
between 180 degrees (top row) and between
720 degrees (bottom row).

age the reader to view our video reconstruction of this data
(see thoracic.mp4). In this video, there are 10 ground truth
frames, 10 TIMBIR frames, 28 warp and project frames,
and 60 frames from our method. In the attached video, we
demonstrate an ability to recover the vertical movement of
the diaphragm at the bottom of the chest cavity, but notice
our method incorrectly adds motion to the middle section
of the chest. We hope to address this issue in future work
by adaptively defining regions of interest for our motion
field to ensure rigid portions of the object remain static over
time. We notice that TIMBIR fails to capture the majority of
breathing movement, and the warp and project method fails
to reconstruct an initial volume of the object, likely because

of the limited view nature of the measurements.

Continuous Volume and Time: We provide videos
demonstrating our ability to upsample our reconstruc-
tions in space and time to arbitrary resolutions, post-
optimization. In heart upsampled.mp4 we show an ani-
mated version of the main text’s Figure 5. In this figure,
our INR was optimized to reconstruct the thoracic data at
a resolution of 803. After the optimization, we upsample
the INR with finer grid (2563) of coordinates. This strat-
egy yields sharper reconstructions compared with naively
upsampling the 803 scene with a linear interpolation. We
observe that our method recovers breathing motion from
the diaphragm and global motion around the heart. While
our method misses finer motion around the heart, it far out-
performs baseline methods in per frame PSNR and qualita-
tively as shown in thoracic.mp4.

In addition to upsampling scene resolution, we provide
an example of sampling our scene at different frame rates.
We accomplish this by sampling our warp field at an ar-
bitrarily fine sequence of times. In the provided video,
dynamic frame rate.mp4, two bars compress an aluminum
cylinder. We show a time-varying reconstruction of this
process at frame rates (5, 10, 30, 60).

Effects of Angular Sampling on Performance: We
observe enhanced reconstruction performance of our tested
methods when we increase the angular range of our projec-
tions (i.e., make the samples more sparsely situated). In Fig-
ure 6 we show the reconstruction results from our method
and TIMBIR [1] on data captured with 90 projections within
180 and 720 degrees. Our method resolves the object geom-
etry and deformation in both cases, whereas TIMBIR only
begins to capture the underlying geometry in the latter case.
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Figure 7: Our reconstruction of 10 breathing phases from the thoracic data from 90 projections between 0−180
degrees.

Gr
ou

nd
 

 T
ru

th

T = 0.00 T = 1.00 T = 0 T = 1.00

Ou
r 

M
et

ho
d

26.44 dB 24.99 dB 26.86 dB 24.21 dB

TI
M

BI
R 

 [0
 - 

18
0]

11.14 dB 11.11 dB 10.97 dB 10.91 dB

W
ar

p 
an

d 
Pr

oj
ec

t 
 [0

 - 
18

0]

16.07 dB 15.88 dB 16.15 dB 15.80 dB

(a) Left columns: Object Alum#3. Right columns:
Object Alum#4.
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(b) Left columns: Object Alum#5. Right columns:
Object Alum#6.

Figure 8: Reconstruction results of our method and competing baseline methods for two objects at first (T =
0.00) and last (T = 1.00) time steps. PSNR values for these reconstructions are found in Table 1 of the main
text.
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(a) Two horizontal bars deform a cylindrical center mass.
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(b) Two horizontal bars deform a cube center mass containing a through-hole.
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(c) Two vertical bars deform a cube center mass containing a through-hole.
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(d) Object alum. # 1 where two plates deform a center mass containing four through-holes.
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(e) Object alum. # 2 where two horizontal bars deform a center mass containing four through-holes

Figure 9: Limited view reconstructions of 5 objects from our D4DCT dataset displayed above ground truth for
10 time frames. The top three object rows are reconstructed from 90 uniformly spaced projections between
0− 720 degrees. The bottom two object rows are reconstructed from 90 projections uniformly spaced between
0− 180 degrees.
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