
PixelSynth: Generating a 3D-Consistent Experience from a Single Image:
Supplemental Material

Chris Rockwell David F. Fouhey
University of Michigan

Justin Johnson

Video results available on the paper website give a thor-

ough sense of model quality and consistency. As stated

in the paper, the proposed method tends to produce high-

quality, consistent scenes. In contrast, baselines such as

SynSin – 6X are unable to create content, and ablations such

as No 3D Accumulation are wildly inconsistent. These re-

sults are best seen in video; and are available at this URL:

https://crockwell.github.io/pixelsynth/#video results

The pdf portion of the supplemental material shows: de-

tailed descriptions of model architectures (Section 1); im-

plementation details (Section 2); details about the experi-

mental setup (Section 3); additional results (Section 4); and

additional and A/B testing details (Section 5).

1. Model Architecture

As stated in the paper, a forward pass of the model takes

in a single image and produces a consistent image in a

novel view p. This involves multiple components: a depth

module D that maps images to depthmaps (producing point

clouds); a projector π that projects a point cloud to a novel

view; an outpainter O that can outpaint missing pixels by

autoregressive modeling on the latent space of a VQ-VAE;

and a refinement R module that adds details and corrects

mistakes on a full image. We now provide more architec-

tural details for each component; source code is available at

https://github.com/crockwell/pixelsynth.

Depth Module D: The Depth Module takes in a 256 ×
256× 3 image and predicts a depth for each pixel, yielding

a 256× 256× 1 depthmap. For fair comparison, we follow

the U-Net used in SynSin [6], which consists of 8 encoding

blocks that are mirrored by 8 decoding blocks.

Encoder: Each encoder block consists of a convolution

(size: 4 × 4 / stride 2 / padding 1) followed by BatchNorm

and leaky ReLU (negative slope of 0.2). Each block halves

the width and height. The first convolution has 32 filters

(mapping 3 channels to 32 channels); filter counts double at

each block until reaching 256; they then remain constant.

Decoder: The decoder mirrors the encoder. Each block

consists of a ReLU, 2× bilinear upsampling, convolution

(3×3 / stride 1 / padding 1), and BatchNorm (except the last

layer). Mirroring the encoder, filter counts remain the same

(256) until the feature map has been upsampled to 1
16 th of

the input size. Filter counts then start halving. The last

block does not have BatchNorm and has a final tanh at the

top of the network.

Projector π: The Projector takes a colored point cloud and

pose p and projects it as if seen at p. This produces a

256× 256× 3 image along with an indication that of which

pixels were projected to and which need to be outpainted.

We implement the projection with the point cloud rendering

functions from Pytorch3D [3]. Our design decisions follow

SynSin [6] for fair comparison: We alpha-composite points

in the z-buffer and accumulate within a radius of 4 pixels.

We find that one change is important for autoregressive

outpainting: we do not consider reprojected pixels at the

edge of the visible region. Pixels that fall just outside the

projected point cloud’s silhouette can be non-zero: each

rendered pixel is a function of the projected points within

a radius, and points just outside the silhouette are the result

of interpolating some points and the missing regions. If we

do not remove this, autoregressive outpainting begins with

a border that is the mean color, which it tends to continue.

We prevent this by treating border pixels as background/to-

be-outpainted.

Outpainter O: The Outpainter takes as input the 256×256
reprojection from the Projector, possibly including large

missing regions, and outpaints to a full image. This consists

of performing autoregressive outpainting on the latent space

of an autoencoder. Crucially, the autoregressive model fol-

lows an image-specific order because each image and new

pose yields different missing regions. We describe the au-

toencoder, followed by the autoregressive model, then the

autoregressive order. Our design decisions aim to make

lightweight versions of VQVAE2 [4] for the autoencoder

and the PixelCNN++ [5] used in Locally Masked Convolu-

tions [2] for the autoregressive model.

Autoencoder: We follow a lightweight adaptation of VQ-

1



VAE2 [4] that maps a 256× 256× 3 input to a 32× 32× 1
quantized embedding space Z and back. The encoder con-

sists of first 3 convolution blocks followed by 2 ResNet

blocks, then 2 convolution blocks and 2 ResNet blocks. The

encoder produces a 32 × 32 × 64 continuous output; each

pixel in the encoded continous space is quantized to an em-

bedding Zi,j,1 ∈ Z
512
1 . The decoder first upsamples using

a transpose convolution followed by a convolution. Then,

it mirrors the encoder with 2 ResNet blocks followed by 2

transpose convolution blocks to produce a 256 × 256 × 3
output.

Autoregressive model: The autoregressive model is a

lightweight PixelCNN++ [5] that produces, as output, a dis-

tribution over the 512 possible quantized embedding values.

Every convolution in the network uses locally-masked con-

volutions [2] for custom completion ordering. We follow

the general design used by Locally Masked Convolutions

[2] on CIFAR-10 consisting of 30 Gated ResNet blocks with

160 filters. However, we reduce its computational cost by

using 12 Gated ResNet blocks with 80 filters, keeping ev-

erything else constant. For more details, we refer the reader

to [2].

Autoregressive ordering: Autoregressive outpainting fol-

lows an image-specific order. We must use this custom or-

der because outpainting works best when one predicts ad-

jacent pixels in a sequence using as much known data as

possible. In some scenarios (e.g., extending a center crop),

this can be achieved with a fixed order. However, in our

case the particular points that must be outpainted depend on

the depthmap as seen in the first image and the new pose

from which it is projected.

Our order (Figure 4 of main paper) aims to go from

closest out, following a spiral pattern. We achieve this by

sorting the background/to-be-outpainted pixels in ascending

distance to the center of mass of the foreground/projected-

to pixels. We start with the closest pixel and add the closest

adjacent point not in the generation order. We repeat this

process until the entire image is ordering; ties due to pix-

els having equal distance are broken using a spiral pattern

outwards from the center of mass.

Refinement Module R: The Refinement Module takes in

a full 256 × 256 × 3 outpainted image and produces the

final, refined output of the same size 256 × 256 × 3. This

is trained adversarially and so it consists of a generator and

discriminator.

Generator: The generator follows BigGAN [1] and SynSin

[6] and consists of 8 ResNet blocks capped with a tanh. Fol-

lowing [1], there is an added downsampling block and with

noise injection into BatchNorm throughout. Specifically,

each ResNet block follows the following structure, consist-

ing of two paths which are added. The first path consists

of: a linear layer that injects noise followed by BatchNorm;

ReLU; convolution (size: 3×3 / stride 1 / padding 1); a lin-

ear layer to inject noise followed by BatchNorm; ReLU; and

convolution (size 3 × 3 / stride 1 / padding 1). The second

path consists as a convolution (size 1×1 / stride 1 / padding

0), which is added to the input. Whenever a ResNet block

downsamples, it uses average pooling to downsample the

input during residual connection; whenever it upsamples, it

uses bilinear upsampling.

Discriminator: The discriminator consists of 2 discrimina-

tor modules at different scales. Each discriminator contains

5 convolution blocks. Each block contains a convolution

(size 4× 4 / stride 2), followed by a Leaky ReLU (negative

slope 0.2). The middle three blocks additionally contain

an instance normalization layer between the conv and leaky

ReLU.

2. Implementation Details
Outpainting Inference. The Outpainter’s autoregressive

model produces its outputs by sampling. The forward pass

produces a probability distribution over the vector embed-

ded classes for every missing pixel in the 32 × 32 image.

We find that best results are obtained by generating a set

of full completions, followed by selection, and by adjusting

the sampling temperature used during inference to balance

detail and error.

Sample selection. For each image, we generate 50 com-

pletions and select the best. We use a combination of the

discriminator loss from R and a classifier entropy. The clas-

sifier is trained on MIT Places 365 [7]. Selection uses the

average of ranks obtained by: (1) ranking in descending or-

der of discriminator loss (since higher loss tends to corre-

spond to issues with details); (2) ranking in ascending order

of entropy (since sensible completions tend to be confident

predictions of the classifier).

Sampling Temperature. Sampling temperature is important

for balancing diversity and error. On Matterport, we use a

sampling temperature of 0.5, which we find reduces strange

completions but is still detailed. On RealEstate10K, we also

use 0.5 temperature for the 1-completion model. Again,

we see this temperature best balances realism with detailed

completions. On RealEstate10K’s 50-completion model,

we find we can increase sampling temperature to 0.7. While

this means more completions are not sensible, we can select

the best using an automated method. Therefore, the final

outputs are more detailed and are still realistic.

Generating Multiple Viewing Directions. To create

scenes as approximated in Figure 1 and seen in the supple-

mental video, support views are synthesized in eight direc-

tions: up, left, down, right, up-left, up-right, down-left, and

down-right. These directions are selected to give a sense of

all directions, and can be used to synthesize interior views

without additional outpainting thereafter. When using mul-



tiple support views, we accumulate in a similar manner to

the first support view: we lift existing information to 3D,

reproject into the new support view, and outpaint as needed.

In other words, we do not outpaint the same region again.

3. Experimental Setup

As detailed in the paper, we use two datasets to evalu-

ate. Matterport uses embodied agent navigation to select

paired views, while RealEstate10K selects paired frames

from real video clips. We therefore use different processes

to achieve a shared goal of selecting image pairs with large

angle change.

Matterport: Matterport selection is straightforward because

of embodiment. This consists of randomly drawing angle

change in an embodied agent with a maximum of 120◦ in

each direction. We use a dataset of 3.6k pairs.

RealEstate10K: On RealEstate10K, it is harder to select

large angle changes because we are instead selecting from

pairs of images in real videos. We select pairs of images

such that the pairs have at least 20 degrees angle change. In

order to attain such pairs, we allow sampling from anywhere

in video clips, which can be over 270 frames apart. To min-

imize the number of view changes so extreme that input and

target view are in different rooms, we limit translation at 1.0

meters, and angle at 60 degrees. We only consider pairs that

meet this criteria, rather than resampling. Our filtered test

set chooses 3600 pairs from over 3.5 million possible pairs

across over 2.4k video clips. All selected evaluation pairs

are cached for replicability.

4. Additional Results

We report additional results, including video predictions,

which provide the best simultaneous display of quality and

consistency.

Additional Qualitative Results: We first report additional

qualitative results. Video results give a thorough sense of

model quality and consistency, and are in the project web-

page. As stated in the paper, the proposed method tends to

produce high-quality, consistent scenes. In contrast, base-

lines such as SynSin - 6X are unable to create content, and

ablations such as No 3D Accumulation are wildly inconsis-

tent. Additional frame-level generated images are available

in Figures 1 and 2.

Additional Quantitative Results: We report more exten-

sive results for generated image quality. This is an expan-

sion on Table 2 in the paper. Although these automated

metrics are poor measures for extrapolation, we present in

more detail in Table 1 for completeness. Ground truth depth

is available in Matterport, meaning visible and non-visible

regions can be attained, similar to SynSin. The same is not

true of RealEstate10K, which contains real videos for which

extensive ground truth labeling is prohibitive.

We reiterate the caution from the paper that PSNR has

poor correlation with perceived quality when there are mul-

tiple possible completions (for instance during outpaint-

ing): Appearance Flow is competitive with other methods

on PSNR but loses to our proposed method 98% of the time

in A/B testing.

Limitations: Our primary limitation is outpainting both

consistent and detailed content, especially on large view

changes. There is a trade-off between the two, as a greater

diversity of samples is required for detail, but can result in

inaccurate content. While the approach of rejection sam-

pling can improve outpainting errors, they remain a chal-

lenge, particularly on Matterport. In fact, on Matterport

we reduce sampling temperature to minimize inconsistent

completions, which can result in less detail. For instance,

in Supp. Figure 2 row 3 column 1, notice missing content

tends to repeat visible content rather than ending visible ob-

jects and creating new ones.

Table 1: Full PSNR and Perc Sim: Traditional metrics such as

PSNR are poor measures for extrapolation tasks, but are reported

for reference.

Method Matterport RealEstate10K

PSNR ↑ Perc Sim ↓ PSNR ↑ Perc Sim ↓
Both InVis Vis

Tatarchenko et al. 13.72 13.59 15.24 3.82 10.63 3.98

Appearance Flow 13.16 13.11 14.75 3.68 11.95 3.95

Single-View MPI - - - - 12.73 3.45

SynSin 15.05 14.35 17.86 3.13 13.92 2.77

SynSin - Sequential 14.31 13.36 17.65 3.14 13.30 2.78

SynSin - 6X 15.52 14.94 17.98 3.16 14.17 2.78

SynSin - 6X, Sequential 15.61 15.07 17.92 3.17 14.21 2.73

Ours 14.60 13.58 18.08 3.17 13.10 2.88

5. Additional and A/B Testing Details

A/B testing is the primary measure for success through-

out experiments. This is common in work on extrapolation,

as automated metrics tend to struggle. We detail our A/B

testing framework below.

All A/B testing follows a standard A/B testing paradigm

where human workers are shown images and are asked

which is preferred given an input image. Workers were

given instructions and example images and labels. They

then had to pass a qualifier assessing whether they under-

stood the task. Workers were also monitored by gold stan-

dard sentinel labels. All annotations were gathered using

thehive.ai, a website similar to Amazon Mechanical Turk.

Tasks are detailed below, and we share worker instructions.

Evaluating Quality via A/B: For comparisons of quality,

we use novel view synthesis. A/B testing presents workers

with the input image reprojected into a new view, and asks



them to select the final image that makes more sense given

this image. The reason we use reprojections as worker input

instead of input images is it makes the A/B testing much

clearer for workers. Using an input and rotation are very

difficult to visualize, and thus difficult to compare across

models. We also do not compare to ground truth output, as

final images can vary drastically from ground truth and still

be highly reasonable.

Instructions are shared in Figure 3. Ties are not allowed;

final selection requires agreement of at least two workers.

Reprojections use the learned depth from our model, which

is effective on large view changes and therefore tend to be

accurate, compared to ground truth images.

Evaluating Consistency via A/B: For consistency A/B

testing, we use a similar novel view synthesis setup. How-

ever, instead of predicting one image, the model predicts

two images such that the second generated image is half the

rotation and translation of the first.

Workers are then asked to compare generated image

pairs across methods. We ask them to do so by showing

them a pair of images generated by two competing meth-

ods, pairs being stacked vertically. We do not use the input

or ground truth images as the goal is not to judge quality,

but only to judge consistency. Thus, even if one pair looks

less realistic, it should be selected. Full instructions are dis-

played in Figure 4.

Consistency can be difficult for workers to judge as it re-

quires attending to small regions of each pair of images that

may be slightly different. We therefore take several steps to

maximize worker success. We use fixed rotations of large

size (∼ 35◦ horizontal, ∼ 17.5◦ vertical) to ensure angle

change is apparent. We also constrain the rotation so that

it must be in the horizontal and vertical directions, as addi-

tionally using roll rotations can make transformations con-

fusing. Movement is also limited to that related to embod-

ied rotation, since movement opposing rotation can make

consistency difficult to evaluate. Finally, rotation is ran-

domly selected for each image from one of eight possible

directions seen in Figure 1: up, left, down, right, up-left,

up-right, down-left, and down-right. This allows us to ex-

plicitly specify rotation direction of each image pair to help

workers attend to specific regions of image pairs.

Evaluating Consistency via Homography: We validate

A/B consistency using PSNR and Perceptual Similarity via

homography. We use the same setup as in A/B testing, but

instead apply only pure rotations to images. This enables

homographies to warp across generated images. We do so

in each pair both from intermediate to extreme images and

from extreme to intermediate images. PSNR is then calcu-

lated on overlapping regions, while Perc Sim is calculated

on warped images with non-overlapping regions masked.

Scores are averaged across both directions in each pair.



Input Reproj. Ours Input Reproj. Ours

Figure 1: Additional Results on RealEstate10K.



Input Reproj. Ours Input Reproj. Ours

Figure 2: Additional Results on Matterport.



Figure 3: Quality A/B Worker Instructions.



Figure 4: Consistency A/B Worker Instructions.



References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

In ICLR, 2019. 2

[2] Ajay Jain, Pieter Abbeel, and Deepak Pathak. Locally masked

convolution for autoregressive models. In Conference on Un-
certainty in Artificial Intelligence, pages 1358–1367. PMLR,

2020. 1, 2

[3] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor

Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.

Accelerating 3d deep learning with pytorch3d. arXiv preprint
arXiv:2007.08501, 2020. 1

[4] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Gener-

ating diverse high-fidelity images with vq-vae-2. In NeurIPS,

pages 14866–14876, 2019. 1, 2

[5] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P.

Kingma. Pixelcnn++: A pixelcnn implementation with dis-

cretized logistic mixture likelihood and other modifications.

In ICLR, 2017. 1, 2

[6] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a single

image. In CVPR, pages 7467–7477, 2020. 1, 2

[7] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and

Antonio Torralba. Places: A 10 million image database for

scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017. 2


