
ALADIN: All Layer Adaptive Instance Normalization
for Fine-grained Style Similarity

1. Further detail on BAM-FG Dataset
We propose BAM-FG, a novel dataset of 2.62 million

digital artworks in 310K project groups sampled from Be-
hance.net – a creative portfolio website. The dataset will be
released upon publication of this work. We gather annota-
tion over 1.62M of these images as discussed in the main
paper to create BAM-FG-CN from 135K projects sampled
at random from BAM-FG. We provide further detail on the
crowd-annotation task that cleans this data using workers
(turkers) on Amazon Mechnical Turk (AMT).

The subjective nature of artistic style required the task to
be designed around getting consensus from multiple anno-
tators of the same input. Each project was presented as an
interactive mood-board to turkers, and they were asked to
select the largest group of images containing a similar style,
if one was present. Fig. 2 (left) shows an example mood-
board. Turkers were trained using some example groups
and were instructed to select based on appearances rather
than semantics.

We gathered the grouping from this and four other turk-
ers for each moodboard, and the graph in Fig. 2 (right) vi-
sualizes the post-processing algorithm. The values for pair-
wise edges between images were aggregated in an affinity
matrix, which was then thresholded at the five consensus
levels CN .

An item-wise list of similarities is first created from the
affinity matrix to cluster the remaining connections into
groups. The list items are iterated, and the sample index
pairs are added to an array of sets, where each set is a new
group. On each iteration, error checking is performed to en-
sure that no data index is contained by multiple sets. If this
happens, the two sets are merged. This ensures that a group
is created from samples, even if not all samples within the
group are connected with the same strength.

Further to the group co-membership information in the
dataset, this strategy implicitly offers information on the
strength of group co-membership an image has to other im-
ages at different consensus levels.

The lower consensus levels reflect less strict similarities
but contain the highest average number of images per group.
Similarly, the higher consensus levels reflect strong similar-
ities between images, but at the cost of lower average image

Figure 1. Example style groups, at C1

counts per group. Fig. 1 shows some example style groups
from the first consensus level C1. Figure 5 shows some ex-
amples of groups before and after cleaning. The choice of
5 turkers was determined from preliminary experiments as
the appropriate balance between cost and consensus signal.

We verify the assumption that the implicit style group-
ings are grounded in human-judged style similarity via re-
sponses from our image retrieval user study. We check the
user responses for retrieved images in the same group as
the query and calculate the frequency with which they se-
lected these as relevant. We average accuracy of 87.73% at
CN = 5.

The experimental set-up allows the cleaning of weak an-
notations within a single project and does not cover the
merging of multiple style groups into one.

1



Figure 2. Crowd-annotation (cleaning) of the BAM-FG-CN dataset. Left: Representative task showed to turkers – the largest style-coherent
subset of images in the project group is annotated (green check marks). Right: Given such annotation for 5 turkers, a graph is constructed
with nodes as images and edges weighted to indicate the number of times a given image pair had been co-selected by a turker. The graph
is processed to identify style groupings (sub-graphs) at different levels of consensus (thresholds on the edge weights).

Figure 3. VRAM usage of a batch using regular contrastive learn-
ing. Given some data samples (blue), the VRAM space (grey) is
taken up by it, the output logits (green), the loss gradients (yel-
low), and the gradients of the entire model (orange) Each block
represents a visualisation of GPU memory usage.

2. Logit accumulation

As per the wider contrastive learning literature, large
batch sizes are important for driving a strong signal for
learning. We report our experiments for batch size of 1024,
where the gain plateus (with some example lower batch
sizes of 512 and 256 dropping from 56.89 to 30.4 and 29.5
respectively). High batch sizes push GPU VRAM require-
ments past the capacity of regular hardware.

Figures 3 and 4 show a visualisation of the logit accumu-
lation algorithm described in the paper for large-batch con-
trastive learning under constrained VRAM. Figure 3 shows
the traditional forward and backward passes of data through
a model, using the following process:

• 1. Use model to generate logits

• 2. Use logits to compute contrastive loss across all
batch items

• 3. Backpropagate the gradients through the logits, and
then the model layers

Figure 4 shows the proposed logit accumulation process,
following these steps:

• Step 1. Split the data into smaller chunks

• Step 2. Use the model to generate the logits in infer-
ence mode (no model gradients). The data and the log-
its here take up the VRAM.

• Step 3. Compute contrastive loss using the concate-
nated logits. Backpropagate the loss, but keep the gra-
dients at the logits. The logits and the loss gradients
here take up the VRAM.

• Step 4. For each data split, re-compute the logits using
the model, this time keeping the model gradients. The
VRAM is now taken up by the data, the loss gradients
and finally, the model gradients.

• Step 5. Without computing any further loss, use the ex-
isting logits’ gradients and pass them down the model
layers. These last two steps function as traditional
VRAM usage, except the loss, which is not com-
puted again. Instead, the gradients from the previously
computed loss (in chunks) now continue to propagate
through the model, where there are now gradients for
the model parameters.



Figure 4. VRAM usage using proposed logit accumulation method for contrastive training. Visualisation for an example where a target
batch size of 15 samples is broken up into 3 chunks of 5 samples. The loss is computed across all 15 sets of logits, with the rest of the
operations (inference and backpropagation) being executed in smaller chunks that fit into VRAM. Each block represents a visualisation of
GPU memory usage.

3. Further examples of image retrieval results
Figs 6 and 7 show further image retrieval results using

ALADIN-L. The searches are performed over the holdout
79k BAM-FG C3 image test set. The left-most images are
the search query images, and the following images are re-
trieved results in order of closest match.

Figs 8, 9, 10, 11 and 12 show very large scale image
retrieval results of ALADIN-L over a 150M image corpus
of artwork on Behance.net.

4. Video: Web-scale style retrieval demo
We include a video demonstration of large scale image

retrieval using ALADIN-L in the supplementary materials.
The video showcases the capability of the model on a web-
scale image corpus (over 150 million images).



Figure 5. Example projects before and after the cleaning process.

Figure 6. ALADIN image retrieval results over the test corpus



Figure 7. ALADIN image retrieval results over the test corpus

Figure 8. ALADIN image retrieval results over a 150M image corpus. The top-left-most image is the query image



Figure 9. ALADIN image retrieval results over a 150M image corpus. The top-left-most image is the query image

Figure 10. ALADIN image retrieval results over a 150M image corpus. The top-left-most image is the query image



Figure 11. ALADIN image retrieval results over a 150M image corpus. The top-left-most image is the query image

Figure 12. ALADIN image retrieval results over a 150M image corpus. The top-left-most image is the query image


