
BuildingNet: Learning to Label 3D Buildings
-Supplementary Material-

Appendix A: Building collection

Mining building models. We used the Trimble 3D Ware-
house repository [5] to mine 3D building models. Specif-
ically, we used keywords denoting various building cate-
gories, following a snapshot from Wikipedia’s article on
“list of building types” [7]. The article contained 181 com-
mon building types, such as “house”, “hotel”, “skyscraper”,
“church”, “mosque”, “city hall”, “castle”, “office building”,
and so on, organized into basic categories, such as resi-
dential, commercial, industrial, agricultural, military, reli-
gious, educational, and governmental buildings. For each
keyword, we retrieved the first 10K models. Since some
keyword searches returned much fewer buildings, and s-
ince identical models were retrieved across different search-
es (e.g., a building can have both tags “house” and “villa”),
we ended up with 48, 439 models. The models were stored
in the COLLADA file format.

Mesh-based filtering. Low-poly meshes often represen-
t low-quality or incomplete buildings, and they often cause
problems in rendering and geometry processing. Thus, we
removed models with less than 3K faces and also removed
models with extremely large number of faces (more than
1M faces) that tend to significantly slow down mesh pro-
cessing and rendering for interactive segmentation (total
13, 628 models removed). Since our UI relies on labeling
mesh subgroups (submeshes) stored in the leaf nodes of the
COLLADA hierarchy, we excluded under-segmented mod-
els with less than 50 mesh subgroups, and over-segmented
models with more than 5K mesh subgroups, which would
be more challenging to label (total 4, 958 models removed).
As a result, the filtered dataset contained 29, 853 models.

Crowdworker-based filtering. The above keyword
searches can be affected by noisy metadata, such as
erroneous and irrelevant tags not describing the actual
shape class. As a result, most of the retrieved models
did not represent buildings. Some models also contained
entire neighborhoods or multiple buildings. Thus, our next
step was to filter 3D models that did not represent single
buildings. We resorted to crowdworkers from Amazon
Mechanical Turk (MTurk) to verify whether each model
is a single building or not, and also classify it into basic

RESIDENTIAL

COMMERCIAL

INDUSTRIAL

RELIGIOUS

EDUCATIONAL

AGRICULTURAL

MILITARY/FORTIFICATION

STADIUM/ARENA

GOVERNMENTAL

MONUMENT

CAN'T TELL

Figure 1: Web questionnaire for classifying a model into
basic building categories

categories following Wikipedia’s categorization. To this
end, we created web questionnaires showing each model
from four viewpoints with elevation 0 degrees from the
ground plane, and azimuth difference 90o degrees. We
asked MTurk participants (MTurkers) to select a category
that best describe the model (see Figure 1 for an example
of rendered views, and basic categories we used). We
instructed them to answer “can’t tell” if the displayed
model did not represent a single building, or when they
could not recognize it.

Each participant was asked to complete a questionnaire
with 20 queries randomly picked from our filtered set of
models. Each query showed one model (Figure 1). Queries
were shown in a random order. Each query was repeated
twice in the questionnaire in a random order to detect unre-
liable participants providing inconsistent answers (i.e., we
had 10 unique queries per questionnaire). We filtered out
unreliable MTurk participants who gave two inconsisten-
t answers to more than 3 out of the 10 unique queries in the
questionnaire. Each participant was allowed to answer one
questionnaire at most to ensure participant diversity. We
had total 4, 344 different, reliable MTurk participants in this
study. For each of the models, we gathered consistent votes
from 7 different MTurk participants. We accepted a build-
ing category for a model, if it was voted by at least 5 out of 7
MTurkers. We note that this majority is statistically signifi-
cant: given 10 categories, the probability of a model getting
5 out of 7 votes given random answers is negligible accord-

Table 1: From left to right: number of models per basic
building category after filtering (original buildings), number
of buildings whose parts were labeled by crowdworkers in
our dataset (labeled buildings), number and percentage of
training, hold-out validation and test buildings

Category
#orig. #label. # train. # val. # test
build. build. (%) (%) (%)

Residential 1424 1266 1007 (62.9%)133 (66.5%)126 (63.0)%
Commercial 153 131 104 (6.5%) 16 (8.0%) 11 (5.5%)

Religious 540 469 386 (24.1%) 38 (19.0%) 45 (22.5%)
Civic 67 61 45 (2.8%) 8 (4.0%) 8 (4.0%)

Castles 85 73 58 (3.6%) 5 (2.5%) 10 (5.0%)
Total: 2286 2,000 1600 (80%) 200 (10%) 200 (10%)

ing to a binomial test (p < 0.001). We removed models
lacking majority votes (i.e., they were not buildings, or the
category could not be determined with high agreement).

The categories “agricultural”, “industrial”, “stadium”
had less than 40 buildings, thus, we decided to exclude them
since their part variability and corresponding labels, would
not be sufficiently represented in training, validation, and
test splits of the segmentation dataset. We also decided to
merge the “educational” and “governmental” buildings in-
to a single broader category, called “civic” buildings com-
monly used to characterize both types of buildings, since we
observed that the exterior of a governmental building (e.g.,
town hall) is often similar to the exterior of an educational
one (e.g., public library or college). The remaining number
of models characterized as buildings from our study was
2, 286. We note that all models in our dataset are stored as
COLLADA files, and have hierarchy tree depth ≥ 2 (excl.
the root). We refer the reader to Table 1 for statistics per
basic category in our dataset and its splits.
Mesh pre-processing. The meshes in the above dataset
were pre-processed to (a) detect and remove interior struc-
ture for each building (since we aimed to gather annotation-
s of building exteriors), (b) detect exact duplicates of sub-
groups useful for label propagation, as discussed in Section
3.1 (interface for labeling) in our main paper. To detec-
t whether a subgroup is interior, we sample 10 points per
each triangle in the subgroup and shoot rays to 50 external
viewpoints from all these sample points. If a single ray es-
capes from the subgroup, it is marked as external, otherwise
it is internal. We remove all subgroups marked as internal.
For duplicate detection, we process all-pairs of subgroup-
s in a building. Specifically, for each pair of subgroups,
we exhaustively search for upright axis rotations minimiz-
ing Chamfer distance. The optimal translation is comput-
ed from the difference of the vertex location barycenters.
After factoring out the rigid transformation, we compute
one-to-one vertex correspondences based on closest pairs
in Euclidean space. If all closest pairs have distance less
than 10−6 of the average OBB diagonals of the subgroups,

Table 2: Statistics regarding mesh resolution in our dataset.
From left to right: building category, average/median num-
ber of faces and vertices.

Category
avg. # med. # avg. # med. #
faces faces vertices vertices

Residential 58,522.7 32,295.5 18,830.6 10,684.0
Commercial 49,248.5 28,862.0 16,722.6 10,041.0

Religious 51,882.7 25,979.0 16,687.4 8,654.0
Civic 40,380.1 20,512.0 13,910.2 7,281.0

Castles 70,731.2 26,493.0 21,050.0 8,822.0
Whole Set 56,250.4 29,741.5 18,120.9 9,845.0

we also check if their mesh connectivity matches i.e., the
subgroup mesh adjacency matrix is the same given the cor-
responding vertices. If they match, the pair is marked as
duplicate. Finally, all such pairs are merged into sets con-
taining subgroups found to be duplicates of each other.

Appendix B: Part labels

To determine a set of common labels used to identify
parts in buildings, we created a variant of our UI that asked
users to explicitly type tags for selected components in-
stead of selecting labels from a predefined list. We gathered
tags from people who have domain expertise in the fields of
building construction or design. Specifically, we asked 10
graduate students in civil engineering and architecture to tag
components in a set of 100 buildings uniformly distributed
across the different categories. Each student labeled 3-10
different buildings. We selected tags that appeared at least
in 0.5% of the labeled components to filter out uncommon
tags. We concatenated the remaining tags with the most fre-
quent tags appearing in the COLLADA leaf nodes (appear-
ing at least in 0.5% of subgroups). We merged synonyms
and similar tags.

The resulting list had 39 tags. During the main phase
of annotation of our 2K buildings, 8 tags were used very
sparsely: less than 0.05% subgroups throughout the dataset
were annotated with these tags: “ramp”, “canopy”, “tympa-
num”, “crepidoma”, “entablature”, “pediment”, “bridge”,
and “deck”. We decided them to exclude them from our
dataset since the number of train or test subgroups with
these labels would be too low (less than 10, or they existed
in only one building). Any subgroups annotated with these
tags were considered as “unlabeled” (undetermined) ones.

Appendix C: Additional dataset statistics

As discussed in our main paper, we gathered 10, 000 an-
notations from qualified MTurkers for 2, 000 buildings (5
annotations per building). Table 2 shows statistics on the
polygon resolution of the meshes in our 2K dataset. Ta-
ble 3 reports the worker consistency per part label, which is

Table 3: Worker consistency for each different part label.
Label Worker consistency

Window 93.4%
Plant 98.7%
Wall 88.2%
Roof 88.7%

Banister 86.5%
Vehicle 99.2%
Door 84.9%
Fence 85.9%

Furniture 95.1%
Column 87.2%
Beam 76.3%
Tower 81.4%
Stairs 92.0%

Shutters 79.3%
Ground 84.8%
Garage 86.9%
Parapet 82.6%
Balcony 75.9%

Floor 79.1%
Buttress 85.0%
Dome 83.5%

Corridor 70.6%
Ceiling 78.4%

Chimney 93.3%
Gate 90.8%

Lighting 90.9%
Dormer 70.4%

Pool 86.8%
Road 73.8%
Arch 72.1%

Awning 59.5%

measured as the percentage of times that a subgroup label
selected by a qualified MTurker agrees wit the majority. Ta-
ble 4 reports the worker consistency per building category
for the training, hold-out validation, and test split. We ob-
serve that the worker consistency remains similar across all
splits and building categories.

Table 5 reports statistics on the number of subgroups
per building category, unique subgroups (counting repeat-
ed subgroups with exactly the same mesh geometry as one
unique subgroup), and number of annotated subgroups. We
note that there were often subgroups that represented tiny,
obscure pieces (e.g., subgroups with a few triangles cover-
ing a tiny area of a wall, beam, or frame), and these were
often not labeled by annotators. As we explained in the
main paper, most of the buildings had more than 80% of
their area labeled (and all had > 50% labeled area). Table 6
presents more statistics on the labeled components (merged,
adjacent subgroups with the same label) of the 2K building
dataset per each basic category.

Appendix D: Network and experiments details

BuildingGNN. We provide more details about the struc-
ture of the BuildingGNN network architecture in Table 7.

Table 4: Worker consistency in the training, hold-out vali-
dation, test split, and our whole dataset per category.

Worker Consistency
Category train. val. test all

Residential 92.2% 93.3% 91.5% 92.2%
Commercial 87.7% 89.4% 95.1% 88.6%

Religious 91.4% 91.7% 91.7% 91.5%
Civic 93.6% 98.8% 98.0% 94.9%

Castles 94.1% 88.8% 88.3% 92.9%
Average: 91.8% 92.4% 92.9% 92.0%

Table 8 presents statistics on the number of edges per type
used in BuildingGNN for our training set.

MinkNet-GC. As mentioned in the experiments section of
our main paper, we implemented a simple graph-cuts vari-
ant, called MinkNet-GC, that incorporates label probabili-
ties from MinkowskiUNet34 as unary terms, and a pairwise
term that depends on angles between triangles, inspired by
[3]. Specifically, we use the following energy that we mini-
mize using [1]:

E(yyy) =
∑
i∈F

ψ(yi) +
∑
i∈F

∑
j∈N (i)

φ(yi, yj) (1)

where yyy = {yi} are the label assignments we wish to
compute by minimizing the above energy, F is the set
of faces in a mesh, and N (i) are the adjacent faces of
each face i. The unary term is expressed as follows:
ψ(yi) = − log f(yi), where f(yi) is the probability dis-
tribution over part labels associated with the face i pro-
duced through average pooling of probabilities comput-
ed from MinkowskiUNet34 on the triangle’s associated
points. The pairwise term uses angles between face normal-
s, φ′(yi, yj) = −λ′ · log(min(ωi,j/90

o, 1)), for yi 6= yj ,
where ωi,j is the angle between the normals of faces i, j.
The term results in zero cost for right angles between nor-
mals indicating a strong edge. The parameter λ is adjusted
with grid search in the hold-out validation set.
Average vs max pooling. As discussed in our experiments
section of our main paper, one possibility to aggregate prob-
abilities of points associated per triangle or component is
average pooling: qt =

∑
p∈Pt

qp/|Pt| where qp and qt

are point and triangle probabilities respectively. An alter-
native is to use max pooling (i.e., replace sum with max
above). We experimented with average vs max pooling al-
so per component. As shown in Table 9, average pooling
works better for both triangle- and component-based pool-
ing (we experimented with MinkowskiNet per-point proba-
bilities).
Experiments with different losses. We experimented
with different losses for our MinkowskiNet variants for
the “BuildingNet-Point” and “BuildingNet-Mesh” tracks.

Table 5: Statistics for each building category. From left to right: building category, total number of models, aver-
age/median/minimum/maximum number of mesh subgroups over the category’s models (leaf nodes of the COLLADA
metadata of the building models), average/median/minimum/maximum number of unique (non-duplicate) subgroups, av-
erage/median/minimum/maximum number of annotated unique mesh subgroups.

Category
num# avg# med# min# max# avg# un. med# un. min# un. max# un. avg# un. med# un. min# un. max# un.

models subgrps subgrps subgrps subgrps subgrps subgrps subgrps subgrps l.subgrps l.subgrps l.subgrps l.subgrps
Residential 1,424 678.7 547 83 1989 167.1 144 61 920 61.4 50.0 7 613
Commercial 153 723.4 606 90 1981 159.8 139 70 907 49.4 44.0 3 223

Religious 540 487.0 348 93 1981 139.9 129 65 667 47.2 45.0 7 139
Civic 67 628.8 480 118 1822 144.4 123 75 618 43.0 43.0 8 106

Castles 85 609.8 485 125 1786 193.0 166 76 590 38.6 37 2 92
Whole Set 2,000 623.6 497.5 83 1989 160.5 140 61 920 55.9 47.0 2 613

Table 6: Statistics per building category regarding components (merged adjacent mesh subgroups). From left to right:
building category, total number of models, average/median/minimum/maximum number of annotated components per model,
average/median/minimum/maximum number of annotated unique (non-duplicate) components per model.

Category
num# avg# med# min# max# avg# un. med# un. min# un. max# un.

models l.comp. l.comp. l.comp. l.comp. l.comp. l.comp. l.comp. l.comp.
Residential 1,424 321.8 243.0 13 1970 46.1 42.0 8 371
Commercial 153 408.0 296.0 4 1680 44.6 39.0 3 247

Religious 540 272.2 184.0 18 1469 37.7 35.0 6 135
Civic 67 378.4 263.0 36 1667 39.3 33.0 7 252

Castles 85 295.3 210.0 40 1200 30.5 28.0 2 107
Whole Set 2,000 316.6 231.0 4 1970 43.2 39.0 2 371

Table 7: BuildingGNN architecture: The Node representa-
tion combines the OBB - (Object Oriented Bounding Box)
, SA - (Surface area), C - (centroid) and MN - (Minkowsk-
iNet pre-trained features) for each sub group. The GNN
is composed of (a) an encoder block made of three MLPs
having 1, 3 and 5 hidden layers respectively, and (b) a de-
coder block with one MLP having 1 hidden layer followed
by softmax. We refer to the code for more details.

Layers Output
Edge (MLP(11×41, layer=1))) 41

Node (6D(OBB)+1D(SA)+3D(C)+31D(MN) 41

Input (Nodei + Edgeij + Nodej) 41

Encoder
(MLP(Input×256, layer=1))) 64

GN(LeakyReLU(0.2))) 64
(MLP(64*3×128, layer=3))) 64

GN(LeakyReLU(0.2))) 64
(MLP(64*3×128, layer=5))) 64

GN(LeakyReLU(0.2))) 64

Decoder
(MLP(128×64, layer=1))) 31

softmax 31

Specifically, we experimented with the Weighted Cross-
Entropy Loss (WCE) described in our main paper, Cross-
Entropy Loss (CE) without label weights, the Focal Loss
(FL) [4], α-balanced Focal Loss (α-FL) [4], and Class-
Balanced Cross Entropy Loss (CB) [2]. Table 10 and
Table 11 show results for the “BuildingNet-Point” and
“BuildingNet-Mesh” tracks respectively. We observe that

Table 8: Statistics for the number of BuildingGNN edges
per type present in the graphs of the training buildings.

Label max # min # mean # # median
edges edges edges edges

Proximity 16317 81 778.0 489.0
Similarity 762156 5 26452.1 4875.5

Containment 26354 71 2,054.5 1,390.0
Support 7234 7 687.5 492.0

All 772878 259 29972.1 7818.0

Table 9: “BuildingNet-Mesh” results using average and
max pooling aggregation over triangles and components
(weighted cross-entropy loss was used for all these exper-
iments).

Method Pool. n? c? Part IoUShape IoUClass acc.

MinkNet2Triangle

Avg X × 28.8% 26.7% 64.8%
Max X × 28.6% 26.1% 64.4%
Avg X X 32.8% 29.2% 68.1%
Max X X 31.5% 28.1% 66.8%

MinkNet2Sub

Avg X × 33.1% 36.0% 69.9%
Max X × 30.4% 32.4% 65.6%
Avg X X 37.0% 39.1% 73.2%
Max X X 32.7% 34.8% 67.4%

(a) in the case that color is not available, WCE is slightly
better than alternatives according to all measures for both
tracks (b) when color is available, CB is a bit better in terms
of Part IoU, but worse in terms of Shape IoU than WCE in
the case of the point cloud track. For the mesh track, CB is

slightly better according to all measures. In general, WCE
and CB behave the best on average, yet their difference is
small. For the rest of our experiments, we use WCE.
Performance for each part label. Our main paper re-
ports mean Part IoU performance in the experiments sec-
tion. Table 14 reports the BuildingGNN-PointNet++ and
BuildingGNN-MinkNet part IoU performance for each la-
bel. We also report the performance of MinkowskiNet and
PointNet++ for the point cloud track. We observe that net-
works do better for common part labels, such as window,
wall, roof, plant, vehicle, while the performance degrades
for rare parts (e.g., awning, arch), or parts whose shape can
easily be confused with other more dominant parts (e.g.,
garage is often confused with door, wall, or window).

Table 10: “BuildingNet-Point” track results using the
Weighted Cross-Entropy Loss (WCE), Cross-Entropy Loss
(CE), Focal Loss (FL), α-balanced Focal Loss (α-FL) and
finally Class-Balanced Cross Entropy Loss (CB). All these
were used to train the MinkowskiUNet34 architecture. For
the FL and α-FL experiments the γ hyper-parameter was
set to 2.0 and for the α-FL the same weights were used as
the weighted cross entropy loss (see Section 4.3 in our main
paper). For the CB experiments we set β = 0.999999.

Method Loss n? c? Part IoU Shape IoU Class acc.

MinkNet

WCE X × 26.9% 22.2% 62.2%
CE X × 24.5% 21.2% 61.3%
FL X × 26.1% 21.8% 61.2%
α-FL X × 22.3% 19.8% 61.5%
CB X × 26.4% 20.9% 61.4%

MinkNet

WCE X X 29.9% 24.3% 65.5%
CE X X 28.5% 24.5% 65.3%
FL X X 28.7% 24.9% 65.2%
α-FL X X 30.1% 25.3% 65.2%
CB X X 30.4% 24.0% 65.5%

Table 11: “BuildingNet-Mesh” results using different loss
functions

Method Loss n? c? Part IoUShape IoUClass acc.

MinkNet2Sub

WCE X × 33.1% 36.0% 69.9%
CE X × 30.7% 32.7% 68.8%
FL X × 31.0% 33.4% 67.9%
α-FL X × 27.2% 28.3% 66.7%
CB X × 32.9% 34.3% 69.1%

MinkNet2Sub

WCE X X 37.0% 39.1% 73.2%
CE X X 35.6% 39.2% 73.5%
FL X X 35.1% 38.4% 73.2%
α-FL X X 36.0% 38.2% 72.4%
CB X X 38.0% 39.7% 73.9%

Appendix E: BuildingGNN ablation study
We conducted an ablation study involving different n-

ode features, and also experimenting with different type-
s of edges in our BuildingGNN. Table 12 present the re-
sults for different experimental conditions of our Build-

Table 12: BuildingGNN ablation study based on Point-
Net++ node features

Variant n? c? Part IoU Shape IoU Class acc.
Node-OBB X X 10.0% 17.1% 56.5%

Node-PointNet++ X X 14.0% 19.1% 52.2%
Node-OBB+PointNet++ X X 24.4% 27.8% 71.7%

w/ support edges X X 26.7% 29.2% 71.5%
w/ containment edges X X 27.9% 30.6% 72.6%
w/ proximity edges X X 26.4% 29.4% 71.4%
w/ similarity edges X X 23.1% 28.5% 69.8%

BuildingGNN-PointNet++ X X 31.5% 35.9% 73.9%

Table 13: BuildingGNN ablation study based on
MinkowskiNet node features

Variant n? c? Part IoU Shape IoU Class acc.
Node-OBB X X 10.0% 17.1% 56.5%

Node-MinkNet X X 35.6% 35.9% 67.7%
Node-OBB+MinkNet X X 40.0% 40.6% 75.8%

w/ support edges X X 42.0% 43.5% 77.8%
w/ containment edges X X 41.1% 42.0% 76.8%
w/ proximity edges X X 39.9% 40.6% 75.6%
w/ similarity edges X X 41.2% 43.0% 75.8%

BuildingGNN-MinkNet X X 42.6% 46.8% 77.8%

ingGNN based on PointNet++ as node features. We first
experimented using no edges and processing node fea-
tures alone through our MLP structure. We experimented
with using only OBB-based features (“Node-OBB”), us-
ing features from PointNet++ alone (“Node-PointNet++”),
and finally using both node features concatenated (“Node-
OBB+PointNet++”). We observe that using all combina-
tions of node features yields better performance compared
to using either node feature type alone. Then we started
experimented with adding each type of edges individually
to our network (e.g., “w/ support edges” in Table 12 means
that we use node features with support edges only). Adding
each type of edge individually further boosts performance
compared to using node features alone. Using all edges
(“BuildingGNN-PointNet”) yields a noticeable 7.1% Part
IoU increase and 8.1% Shape IoU increase compared to
using node features alone. Table 13 shows the same ex-
periments using MinkowskiNet-based features. We observe
that combined node features perform better than using ei-
ther node feature type alone. Adding each type of edges
helps, except for proximity edges that seem to have no im-
provement when used alone. Using all edges still yields a
noticeable 2.6% Part IoU increase and 6.2% Shape IoU in-
crease compared to using node features alone.

We also experimented with DGCNN [6] as a backbone in
our GNN for extracting node features. Unfortunately, DGC-
NN could not directly handle our large points clouds (100K
points). It runs out of memory even with batch size 1 on a
48GB GPU card. We tried to downsample the point clouds
(10K points) to pass them to DGCNN, then propagated the

Table 14: Part IOU performance for each label. BuildingGNN-MinkNet and BuildingGNN-PointNet++ are tested on the
mesh track, while MinkNet and PointNet++ are tested on the point cloud track. The left half of the table reports performance
when color is available (“n+c”), while the right half reports performance when it is not available (“n”).

Label BuildingGNN BuildingGNN MinkNet PointNet++ BuildingGNN BuildingGNN MinkNet PointNet++
MinkNet(n+c) PointNet++(n+c) (n+c) (n+c) MinkNet(n) PointNet++(n) (n) (n)

Window 70.5% 71.1% 44.1% 34.8% 70.4% 68.3% 35.6% 0.0%
Plant 81.0% 69.8% 79.6% 70.3% 79.8% 69.8% 79.7% 48.4%

Vehicle 83.7% 77.3% 77.1% 29.7% 82.7% 72.4% 75.8% 19.2%
Wall 78.1% 77.5% 64.5% 57.9% 76.0% 74.4% 63.2% 54.4%

Banister 50.0% 19.9% 44.9% 0.0% 56.5% 22.0% 45.6% 0.0%
Furniture 59.7% 37.0% 56.0% 0.0% 58.3% 43.5% 54.9% 0.0%

Fence 55.5% 34.7% 71.3% 16.5% 64.1% 19.7% 49.5% 9.6%
Roof 78.9% 72.1% 65.3% 58.2% 70.2% 69.0% 67.0% 56.4%
Door 41.7% 37.6% 21.7% 0.0% 39.2% 37.7% 23.8% 0.0%
Tower 53.4% 41.2% 46.5% 2.3% 50.8% 37.5% 43.4% 4.8%

Column 61.5% 27.6% 49.5% 0.6% 53.6% 34.7% 42.9% 1.1%
Beam 24.9% 22.4% 13.8% 0.02% 30.3% 21.5% 17.2% 0.0%
Stairs 38.6% 25.6% 26.9% 0.0% 41.0% 24.1% 27.8% 0.0%

Shutters 1.0% 1.3% 0.0% 0.0% 1.7% 0.0% 0.0% 0.0%
Garage 9.0% 10.6% 3.6% 0.0% 10.6% 8.4% 6.8% 0.0%
Parapet 24.9% 3.9% 11.6% 0.0% 28.6% 2.5% 21.0% 0.0%

Gate 14.0% 16.5% 6.4% 0.0% 7.9% 12.3% 7.9% 0.0%
Dome 53.8% 10.1% 48.0% 1.9% 54.3% 14.2% 54.5% 16.3%
Floor 51.5% 37.7% 47.8% 36.9% 51.2% 30.9% 46.8% 30.0%

Ground 75.0% 65.1% 77.4% 64.1% 61.8% 55.5% 60.8% 42.6%
Buttress 23.8% 9.6% 15.6% 0.0% 38.7% 12.3% 6.1% 0.0%
Balcony 19.6% 9.5% 15.0% 0.0% 15.5% 15.6% 17.3% 0.0%
Chimney 70.0% 50.9% 57.9% 0.0% 53.6% 49.5% 60.1% 0.0%
Lighting 6.4% 9.1% 16.8% 0.0% 24.9% 3.5% 23.3% 0.0%
Corridor 16.3% 10.5% 15.9% 4.2% 7.2% 4.1% 7.2% 0.0%
Ceiling 28.0% 23.8% 22.1% 4.6% 28.0% 20.5% 17.4% 4.6%

Pool 70.8% 53.0% 78.7% 77.8% 38.1% 33.0% 43.0% 0.0%
Dormer 27.3% 20.4% 9.6% 0.0% 22.1% 23.3% 6.8% 0.0%
Road 46.2% 24.1% 53.5% 40.0% 1.9% 16.3% 21.5% 0.0%
Arch 8.4% 5.2% 0.9% 0.0% 3.2% 2.9% 0.8% 0.0%

Awning 1.5% 0% 3.8% 0.0% 1.6% 0.0% 0.0% 0.0%

node features back to the 100K points using nearest neigh-
bor upsampling. The part IoU was 32.5% in the mesh track
with color input and using all edges (i.e., the performance
is comparable to BuildingGNN-PointNet++, but much low-
er than BuildingGNN-MinkNet). Still, since other methods
were able to handle the original resolution without down-
sampling, this comparison is not necessarily fair, thus we
excluded it from the tables showing the track results in our
main paper.

Appendix F: Additional Material

As additional supplementary material of our paper,
we include part of our video tutorial that demonstrates
our UI functionality (see MP4 video in the supplemen-
tary zip file). Finally, we refer readers to our project
page www.buildingnet.org for the dataset and source
code.

References
[1] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approx-

imate energy minimization via graph cuts. IEEE Trans. Pat.
Ana. & Mach. Int., 23(11), 2001. 3

[2] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-Balanced Loss Based on Effective Number
of Samples. In Proc. CVPR, 2019. 4

[3] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh.
Learning 3D Mesh Segmentation and Labeling. ACM Trans.
on Graphics, 29(3), 2010. 3

[4] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dollár. Focal Loss for Dense Object Detection. In
Proc. ICCV, 2017. 4

[5] Trimble. 3D Warehouse, 2020. 1
[6] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph CNN for learning on point clouds. ACM Trans. on
Graphics, 38(5), 2019. 5

[7] Wikipedia. List of building types, 2018. 1

www.buildingnet.org

