
A. Supplementary Material
A.1. Toy experiment for share step size

We perform a toy experiment to compare individual step
sizes for each candidate choice with a share step size for
all candidate choices in one layer. The experiment is valid
with the same settings except for step size design. The re-
sults are consistent with our observation that the range of
activation and weights can be roughly the same, therefore,
the share step size can be used to support the quantized su-
pernet training.

Table 1. Toy experiment for step size settings. Individual denoted
the second choice and share denotes the third choice in the main
text. K3 is short for setting the kernel size of all blocks to 3.

K3 K5 K7
Individual Step Size 74.78 75.39 75.40
Share Step Size 74.99 75.74 75.78

A.2. Proof of Bit Inheritance

Given a convolution layer in the K bit supernet, we de-
note sK as the scale parameters of this layer, and sK−1 =
2sK as the doubled scale for the K − 1 bit supernet. We
use w and Nw to denote the weights of this layer which is
inherited from K to K − 1. Next, we show that the L1 dis-
tance of Q(w, sK) and Q(w, sK−1) is bounded by Nw ·sK .
It means the initialized Q(w, sK−1) has a bounded distance
with the well-trained Q(w, sK).

For each wi, we have:

Q(wi, sK) = ⌊clip(
wi

|sK |
,−2K−1, 2K−1 − 1)⌉ × |sK |,

Q(wi, sK−1) = ⌊clip(
wi
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,−2K−2, 2K−2 − 1)⌉ × |sK−1|

= 2⌊clip(
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|2sK |
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(1)
Based on this expression, we further get:

|Q(wi, sK)−Q(wi, sK−1)| =
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For any wi and sK , we have:
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Thus,

|Q(wi, sK)−Q(wi, sK−1)| ≤ |sK |, (4)

And,

||Q(w, sK)−Q(w, sK−1)||1 ≤ Nw · |sK |. (5)

A.3. Training details

Dataset config: We evaluate our method on the ImageNet
dataset. The training dataset is made up of 1.28 million im-
ages with resolution 224 × 224 belonging to 1000 classes
and the validation set has 50k images. For ImageNet train-
ing, we use the typical random resized crop, randomly hori-
zontal flipping and color jitter of [32/255, 0, 0.5, 0] for data
augmentation. During evaluation, we first determine the ac-
tive image size s, and resize the image into ⌈s/0.875⌉ ×
⌈s/0.875⌉ and center crop s× s image.

Quantization aware training: We reimplement LSQ [6]
as our base quantization method. For ImageNet classifica-
tion task, we start from a floating-point model and finetune
the model for 150 epochs. The optimizer is SGD with Nes-
terov momentum 0.9 and weight decay 3e-5, and the la-
bel smoothing ratio is 0.1. The initial learning rate is 0.04
under the batch of 1024, with the cosine annealing sched-
ule. The dropout rate is 0.1. In the finetuning stage like
OQAT@25, we take the weights of the subnet from the su-
pernet and finetune for 25epochs. The initial learning rate
is 0.0016. In the supernet training, only the learning rate
and the number of epochs are different. For object detec-
tion task on COCO dataset, we first train the floating-point
models for 50 epochs, the learning rate starts from 0.16 with
batch size 128, the learning rate is decayed by 0.1 at epoch
35 and epoch 45. Then for quantization-aware training, the
learning rate starts from 0.016, and the rest is the same with
the floating point models training pipeline. The Backbone
except the first convolution is quantized in object detection
task.

OQAT procedure: Combining the advantages of
OFA [4] and BigNas [24], the overall OQAT procedure is
divided into four steps as follow:

Step0: we train the 4 bit biggest models in the search
space. It follows the typical quantization-aware training, we
use the floating-point pre-trained model as initialization and
finetuning for 150 epochs. The learning rate is 0.04 with a
batch-size of 1024.

Step1: in the supernet training phase, the biggest model
obtained in step 0 is used as initialization. The input reso-
lution, kernel size, width, and depth are randomly sampled.
This whole process takes 200 epochs. In one iteration, four
models are sampled with the sandwich rule [23], which is
the biggest subnet and the smallest subnet, and two random
sampled subnets. The learning rate is 0.02 with a batch size
of 1024.



Table 2. MBV2 Search Space: MBConv refers to inverted residual block which has a ’1×1 pointwise - k×k depthwise- 1×1 pointwise’
structure without SE module [11], MBConv-SE is the MBConv block with SE module. Channels mean the number of output channels in
this stage. Depth means the number of blocks or layers in this stage. Expand ratio refers to the expansion ratio of input channels which
controls the width of the depthwise convolution. Convolution layers in the first and last have no expansion ratio. Kernel size refers to the
kernel size k of the depthwise convolution.

Stage Operator Resolution Channels Depth Expand ratio Kernel size
Conv 128× 128 - 224× 224 32 1 3

1 MBConv 64× 64 - 112× 112 16 1 1 3
2 MBConv 64× 64 - 112× 112 24 2, 3, 4 3, 4, 6 3, 5, 7
3 MBConv 32× 32 - 56× 56 40 2, 3, 4 3, 4, 6 3, 5, 7
4 MBConv 16× 16 - 28× 28 80 2, 3, 4 3, 4, 6 3, 5, 7
5 MBConv 8× 8 - 14× 14 96 2, 3, 4 3, 4, 6 3, 5, 7
6 MBConv 8× 8 - 14× 14 192 2, 3, 4 3, 4, 6 3, 5, 7
7 MBConv 4× 4 - 7× 7 320 1 3, 4, 6 3, 5, 7

Conv 4× 4 - 7× 7 1280 1 1

Table 3. MBV3 Search Space: MBConv refers to inverted residual block which has a ’1×1 pointwise - k×k depthwise- 1×1 pointwise’
structure without SE module [11], MBConv-SE is the MBConv block with SE module. Channels mean the number of output channels in
this stage. Depth means the number of blocks in this stage. Expand ratio refers to the expansion ratio of input channels which controls the
width of the depthwise convolution. Convolution layers in the first and last have no expansion ratio. Kernel size refers to the kernel size k
of the depthwise convolution.

Stage Operator Resolution Channels Depth Expand ratio Kernel size
Conv 128× 128 - 224× 224 16 1 3

1 MBConv 64× 64 - 112× 112 16 1 1 3
2 MBConv 64× 64 - 112× 112 24 2, 3, 4 3, 4, 6 3, 5, 7
3 MBConv-SE 32× 32 - 56× 56 40 2, 3, 4 3, 4, 6 3, 5, 7
4 MBConv 16× 16 - 28× 28 80 2, 3, 4 3, 4, 6 3, 5, 7
5 MBConv-SE 8× 8 - 14× 14 112 2, 3, 4 3, 4, 6 3, 5, 7
6 MBConv-SE 8× 8 - 14× 14 160 2, 3, 4 3, 4, 6 3, 5, 7

Conv 4× 4 - 7× 7 960 1 1
Conv 1× 1 1280 1 1

With bit inheritance, the training of the 3/2 bit supernet
is simplified. And the training time is reduced.

Step2: In the 3-bit supernet, we use the 4-bit supernet ob-
tained in the Architecture Shrinking Step1 part2 as initial-
ization. We directly random sample input resolution, ker-
nel, width, and depth. four models are sampled, which is
the biggest subnet and the smallest subnet, and two random
sampled subnets for one update. We only use 25 epochs and
the learning rate is 0.0016.

Step3: In the 2-bit supernet, we use the 3-bit supernet
obtained in Step2 as initialization. We also directly random
sample resolution, kernel, width, and depth. Four models
are sampled, which is the biggest subnet and the smallest
subnet, and two random sampled subnets for one update.
We only use 120 epochs and the learning rate is 0.0256.

OQAT subnet finetuning: Our OQAT performance can
be further improved by finetuning the subnet weights sliced
from the OQAT supernet as suggested by OFA [4]. The
accuracy of the subnet is already higher than training from
scratch. In default, the subnets are finetuned for 25epochs.

The initial learning rate is 0.0016 with a batch size of 1024,
with the cosine annealing schedule.

Knowledge distillation: The knowledge distillation(KD)
used in our experiment is the traditional loss(KD) proposed
in [9]. The student’s logits and teacher’s logits are used to
calculating the cross-entropy loss. The temperate is 1 and
the kd loss weight is 1.

Search Space: The details of search space is shown in
Table 2 and Table 3. And we also compare with other
quantization-aware NAS methods in Table 4. Quantiza-
tion algorithm, based network architecture, bit width search
space, and retrain or not are listed.

Architecture search of quantized supernet. We directly
evaluate the sampled subnets from the supernet without fur-
ther retraining. It’s worth mentioning that we use the pre-
dictive accuracy on 10K validation images sampled from
trainset to measure the subnets in the search procedure. Fur-
thermore, we exploit a coarse-to-fine architecture selection



Table 4. The details of quantization-aware NAS: named SPOS [7], BMobi [17], BATS [2], APQ [21] are given, including network
architecture, search space, bit-width and quantization algorithm PACT [5], Bireal [16], Xnor-net++ [3], HAQ [20], LSQ [6]. Group
MobileNet denotes the MobileNet with group convolution in place of depthwise convoluton.

SPOS BMobi BATS APQ OQAT
Quantization
Algorithm

PACT Bireal Xnor-net++ HAQ LSQ

Network
Architecture

ResNet Group MobileNet Group Darts MobileNetV2
MobileNetV2,
MobileNetV3

Bit Width {1, 2, 3, 4} {1} {1} {4, 6, 8} {2, 3, 4}

Search Space
width,
bit-width

group number
operation,
connection

width,
depth,
kernel size,
bit-width

width,
depth,
kernel size,
resolution

Retrain ✓ ✓ ✓ ✓ ×

Table 5. ImageNet performance under 4, 3, 2 bit. OQAT-4bit-M and OQAT-4bit-L denote medium and large model size in the 4-bit
OQATNets family respectively. OQAT means we take weights from the supernet directly and OQAT@25 means we take weights from the
supernet and finetune for 25 epochs. LSQ* results for OQAT models means we train these models from scratch individually. W/A denotes
the bit-width for both weights and activation. BitOPs is calculated by [22, 14].

Models Method Bit (W / A) BitOPs (G) Top-1 Acc.(%)
Efficient-B0 QKD 4 6.78 73.1
OQAT-4bit-L LSQ* 4 4.67 73.3
OQAT-4bit-L OQAT 4 4.67 73.4
OQAT-4bit-L OQAT@25 4 4.67 74.1
ResNet-18 LSQ / LSQ* 4 34.6 / 34.6 71.1 / 70.9
MobileNetV2 LSQ* / SAT 4 5.44 71.3 / 71.1
MbV3-L (1.0x) LSQ* 4 3.84 71.7
OQAT-4bit-M OQAT@25 4 3.0 72.3
ResNet-18 LSQ / APOT 3 22.8 / 19.1 70.6 / 69.9
Efficient-B0 QKD 3 4.16 69.2
OQAT-3bit-L OQAT@25 3 3.07 71.3
MobileNetV2 LSQ* / QKD 3 3.39 / 3.39 68.2 / 62.6
OQAT-3bit-L LSQ* 3 3.07 70.5
MbV3-L 1.0x LSQ* 3 2.43 67.5
OQAT-3bit-M LSQ* 3 1.92 67.2
OQAT-3bit-M OQAT@25 3 1.92 68.3
Efficient-B0 QKD / LSQ+ 2 2.30 50.0 / 49.1
MobileNetV2 LSQ* / QKD 2 1.92 55.7 / 45.7
OQAT-2bit-L OQAT@25 2 1.60 64.0
OQAT-2bit-S OQAT@25 2 0.89 57.7

procedure, similar to [24]. We first randomly sample 10K
candidate architectures from the supernet with the FLOPs of
the corresponding floating-point models ranging from 50M
to 300M (2K in every 50M interval). After obtaining the
good skeletons (input resolution, depth, width) in the pareto
front of the first 10K models, we randomly perturb the ker-
nel sizes to further search for better architectures.

A.4. Further comparison with existing architec-
tures

We also verify our searched architecture under down-
stream task for Object Detection.

We evaluate several architectures with strong quantiza-

tion methods including LSQ [6], LSQ+ [1], APOT [14],
QKD[13], SAT [12], and LSQ* which is the LSQ imple-
mented by us on different models to construct strong base-
lines. The result of 4 bit ResNet-18@LSQ* validates that
our implementation is comparable.

Our OQAT benefits from joint quantization and net-
work architecture search, as well as the bit inheritance for
lower bits. As shown in Table 5, our OQATNets out-
performs multiple quantization methods on models like
MobileNetV2 [18], EfficientNet-B0 [19] and MbV3 [10]
under all bit-widths we implements. 4 bit: OQAT4bit-
L has 1% accuracy gain higher than Efficient-B0@QKD.
OQAT4bit-M outperforms ResNet-18@LSQ with 10% of



Table 6. 3-bit Quantization-Aware Training results on the COCO dataset, the training pipeline are the same, except for the backbone
architectures.

FLOPs APFP AP AP50 AP75 APs APm APl

ResNet18 1800M 33.8 32.4 49.2 33.9 16.4 33.0 45.3
MobileNetV3 219M 33.5 30.4 46.2 32.1 16.7 32.7 42.3
OQAT-3bit-M 222M 33.2 30.8 47.2 32.7 17.4 32.5 41.8
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Figure 1. Architecture visualization: of OFANet and our searched OQATNets. ’MB E3 K3’ indicates ’mobile block with expansion ratio
3, kernel size 3x3’. From top to bottom, there are FP OFANet, 4-bit OQATNet and 2-bit OQATNet. There are under similar computation
cost, around 220M FP FLOPs.

its FLOPs. 3 bit: Our OQAT3bit-L can also match
the accuracy of 3 bit ResNet-18@LSQ with 13% FLOPs
and 3 bit Efficient-B0@QKD with 74% FLOPs. 2 bit:
Our OQAT2bit-L requires less FLOPs but achieves signifi-
cantly higher Top-1 accuracy (64.0%) when compared with
EfficientNet-B0@QKD (50.0%) and MobileNetV2@LSQ*
(55.7%). The results verify that the joint design of quantiza-
tion and NAS results in more quantization-friendly compact
models.

Train-from-scratch: we present some training-from-
scratch results for OQAT-4bit-L, OQAT-3bit-L and OQAT-
3bit-M to compare with existing models under the same
training routine. The OQAT-4bit-L@LSQ* has simi-
lar accuracy while has much fewer BitOPs, which ver-
ifies the superiority of our searched architecture. Sim-
ilarly, the result of OQAT-3bit-L@LSQ* has 2% accu-
racy gain with MobileNetV2@LSQ* with 0.3G fewer
BitOPs. The accuracy of OQAT-3bit-M@LSQ* is roughly
the same with MobileNetV3@LSQ*, while we have 0.5G
fewer BitOPs. Although the supernet benefits from

distillation, the train-from-scratch results verify that we
do search for a better quantization-aware friendly mod-
els compared with existing efficient architectures Mo-
bileNetV2/MobileNetV3/EfficientNetB0.

A.5. Further verification on Object Detection Task

To further verify our searched architecture on differ-
ent tasks, we perform quantization on RetinaNet [15].
ResNet18 [8], MobilenNetV3 [10] are used to fairly com-
pared with OQAT-3bit-M. OQAT-3bit-M has 0.4% gain in
terms of AP than MobileNetV3. OQAT-3bit-M has 1%
gain in APs than ResNet18.

A.6. Visualization of searched architecture under
different bits.

In Figure 1, the searched architeture with similar FLOPs
under different bit-widths are presented. The searched
quantization models are clearly wider and shallower com-
pared with floating-point models. It is consistent with the
analysis presneted in the Section 5.5.
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