

Supplementary Material for A Hierarchical Transformation-Discriminating Generative Model for Few Shot Anomaly Detection

Shelly Sheynin^{1*} Sagie Benaim^{1*} Lior Wolf^{1,2}

¹The School of Computer Science, Tel Aviv University

²Facebook AI Research

1. Transformations

As discussed in Sec. 3.1 of the main text, due to memory constraints, we use a subset of $M = 54$ transformations. Let $T_{rgb2gray}$ be the transformation of an image from RGB to grayscale. T_{flip}^1 is a horizontal flip and T_{flip}^0 is the identity transformation. $T_{translate_x}^b$ is the horizontal translation along the x-axis by 15% of the image width, to the left ($b = 1$) or to the right ($b = -1$). $b = 0$ is the identity translation. $T_{translate_y}^c$ is the vertical translation along the y-axis by 15% of the image height, upwards ($c = 1$) or downwards ($c = -1$). $c = 0$ is the identity translation. T_{rotate}^d stands for the rotation by d degrees, where $d \in \{0, 90, 180, 270\}$. T_1, \dots, T_{32} : $T_{flip}^a \circ T_{translate_x}^b \circ T_{translate_y}^c \circ T_{rotate}^d$ where $a \in \{0, 1\}$, $b \in \{0, 1\}$, $c \in \{0, 1\}$ and $d \in \{0, 90, 180, 270\}$. T_{33}, \dots, T_{38} : $T_{flip}^a \circ T_{translate_x}^b \circ T_{translate_y}^c$, where $a \in \{0, 1\}$, $b \in \{-1, 1, 0\}$ and $c = -1$. T_{39}, \dots, T_{42} : $T_{flip}^a \circ T_{translate_x}^b \circ T_{translate_y}^c$, where $a \in \{0, 1\}$, $b = -1$ and $c \in \{0, 1\}$. T_{43}, \dots, T_{50} : $T_{rgb2gray} \circ T_{flip}^a \circ T_{rotate}^d$, where $a \in \{0, 1\}$ and $d \in \{0, 90, 180, 270\}$. T_{51}, T_{52} : $T_{rgb2gray} \circ T_{translate_x}^b$ where $b \in \{-1, 1\}$. T_{53}, T_{54} : $T_{rgb2gray} \circ T_{translate_y}^c$ where $c \in \{-1, 1\}$.

2. Detailed Per-Class Results

In Sec. 4 of the main text, for the task of anomaly detection and defect detection, we report mean AUC values and mean standard deviation values, over all classes. Detailed per-class results are provided here.

In particular, full anomaly detection results for the datasets of Paris, CIFAR10, FashionMNIST and MNIST are given in Tab. 4 (one-shot), Tab. 5 (five-shot) and Tab. 6 (ten-shot). This supplements Fig. 2 of the main text. 50-shot and 80-shot results for CIFAR10 are given in Tab. 7. Together with tables 4-6, this supplements Fig. 4 of the main

text.

Tab. 8 gives the full defect detection results on MVTec for one-shot, five-shot and ten-shot settings, supplementing Fig. 5 of the main text.

Tab. 9, gives the ablation analysis performed on CIFAR10, for both the one-shot and five-shot settings, supplementing Tab. 1 and discussed in Sec. 4.3 of the main text.

Lastly, Tab. 10, shows the effect of using a different percentage of patches for detect detection, supplementing Fig. 7 and discussed in Sec. 4.3 of the main text.

3. Additional analyses

3.1. Transformations analysis

In addition to ours/no transformations, we consider subsets of transformations, for MNIST one-shot or CIFAR one-shot. The results are reported in Tab. 1. As can be seen, our subset achieves the best performance. We consider horizontal flips (a), rotations (b), translations (c), horizontal flips and rotations (d), grayscale (only for CIFAR10) (e), all compositions of transformations grayscale (overall 72 transformations) (f), and without transformations (g). It is important to note that using only translations or horizontal flips, we cannot discriminate many classes (for MNIST - the digits: 0, 8, and for CIFAR10-all the classes) resulting in a drop in performance, that improved when adding transformations.

3.2. Anomaly score analysis

Our anomaly score (Eq. 12) takes into account the scales, patches, and transformations. In Tab. 2, we consider alternative scores for one-shot CIFAR10 (as in Sec. 4.3). In particular, in (a), we pick the score of the fake class. However, this does not take into account the ability to correctly discriminate the transformation, hence resulting in a lower score. In (b) we also consider taking the maximum score over patches instead of a sum as in Eq. 12, and in (c) the maximum score over scales instead of a sum.

*Equal contribution

Transformation set	(a)	(b)	(c)	(d)	(e)	(f)	(g)	Ours
MNIST	68.7 ± 10.7	78.9 ± 8.5	71.6 ± 14.0	76.4 ± 7.3	-	75.8 ± 5.9	74.9 ± 8.4	79.3 ± 5.6
CIFAR	50.5 ± 0.5	58.5 ± 4.5	54.8 ± 5.9	58.1 ± 4.6	59.1 ± 7.4	61.4 ± 6.3	59.1 ± 7.3	64.9 ± 5.9

Table 1. **Transformation analysis for One-Shot anomaly detection.** (a) horizontal flips, (b) rotations, (c) translations, (d) horizontal flips and rotations, (e) just grayscale conversion (f) all compositions of transformations w/o grayscale, (g) w/o transformation

Figure 1. The multiscale schemes detect defects of different sizes.

Score	(a)	(b)	(c)	Ours
CIFAR	58.1 ± 3.9	59.3 ± 6.2	63.4 ± 4.7	64.9 ± 5.9

Table 2. **Anomaly score analysis for One-Shot anomaly detection.** We consider alternative scores: (a), we pick the fake class, (b) Taking a maximum over patches instead of a sum, (c) Taking a maximum over scales instead of a sum

X-shot	1	5	10	100	1	5	10	100
	Ours							
Params (K)	559	559	559	559	233	233	233	233
Train time (h)	0.9	1.6	1.8	2.6	0.007	0.03	0.05	0.4
Test time (sec)	54	54	54	54	426	426	426	426
Peak mem. (GB)	2.2	10.9	21.8	212.9	2.9	3.3	3.7	5.1

Table 3. Comparison of computational cost.

3.3. Generated samples analysis

Images are considered non-anomalous if their multiscale patch distribution lies in that of input images. We argue that this is a valid assumption - In Fig. 3, middle image, for instance, no other monument, other than the Louvre, depicts similar structure. To check this, we consider 1000 generated samples by (i) our one-Shot model, (ii) Singan[28], for CIFAR10. We consider the setting of our paper, where generated images replace real normal samples. Our model gives an AUC of 100.0 for the samples generated by (i) and both by (ii). For reference, standard many-image GEOM model [10] gives AUC of 69.5 for (i) and AUC of 70.6 for (ii) indicating it relies less on local structure.

3.4. Defect localization analysis

As our method models patches at different scale, it enjoys the property of detecting multiple defects, each one can be of different size, as shown in Fig 1.

4. Computational cost and model size

Tab. 3 shows the computational cost of our model and

DifferNet [29] baseline. We also perform timing of training an inference speed on NVIDIA V100. We train the one-shot, five-shot and ten-shot settings on a single node with 1 GPU, and the 100-shot on a single node with 8 GPU.

Class	PatchSVDD	DROCC	DeepSVDD	GEOM	GOAD	Ours
PARIS						
Defense	57.0 \pm 3.5	53.2 \pm 8.0	50.1 \pm 5.0	59.4 \pm 3.1	47.8 \pm 5.9	65.6 \pm 9.9
Eiffel	46.2 \pm 6.2	53.3 \pm 7.9	45.8 \pm 6.7	46.9 \pm 6.0	54.6 \pm 3.3	57.8 \pm 4.5
Invalides	46.0 \pm 8.2	52.3 \pm 5.1	50.3 \pm 6.4	56.1 \pm 2.9	52.9 \pm 3.8	71.0 \pm 6.4
Louvre	47.3 \pm 5.5	57.5 \pm 3.3	50.1 \pm 3.0	53.7 \pm 4.5	52.6 \pm 3.1	61.7 \pm 7.2
Moulinrouge	60.4 \pm 10.2	43.7 \pm 6.4	64.6 \pm 2.1	9.4 \pm 7.6	51.6 \pm 5.9	72.8 \pm 6.8
Museedorsay	55.7 \pm 8.0	42.3 \pm 3.7	85.9 \pm 1.9	85.1 \pm 2.7	49.3 \pm 16.8	73.1 \pm 10.2
Notredame	52.3 \pm 4.8	46.9 \pm 4.6	58.5 \pm 3.1	52.2 \pm 5.1	49.8 \pm 5.7	66.0 \pm 9.4
Pantheon	62.8 \pm 3.7	44.2 \pm 6.6	54.8 \pm 12.0	58.5 \pm 7.8	49.9 \pm 5.6	73.8 \pm 8.8
Pompidou	56.7 \pm 10.2	47.8 \pm 8.9	65.5 \pm 3.6	65.3 \pm 8.1	49 \pm 7.8	68.3 \pm 9.4
Sacrecoeur	55.1 \pm 7.9	51.8 \pm 8.4	52.1 \pm 4.3	48.4 \pm 6.7	52 \pm 3.5	61.6 \pm 8.5
Triomphe	57.5 \pm 3.8	44.2 \pm 5.9	59.2 \pm 5.4	48.9 \pm 5.6	49 \pm 5.7	60.8 \pm 5.5
Avg	54.3 \pm 6.5	48.8 \pm 6.2	57.9 \pm 4.9	56.7 \pm 5.5	50.8 \pm 6.1	66.6 \pm 7.9
CIFAR10						
Plane	50.1 \pm 15.8	54.9 \pm 9.3	29.8 \pm 5.5	49.5 \pm 11.1	59.8 \pm 8.3	67.2 \pm 5.8
Car	51.4 \pm 6.3	35.2 \pm 7.4	81.0 \pm 13.5	53.3 \pm 5.7	58.2 \pm 5.8	65.6 \pm 5.9
Bird	46.5 \pm 8.6	59.5 \pm 3.7	50.4 \pm 22.4	54.7 \pm 6.6	53.1 \pm 9.1	55.9 \pm 5.7
Cat	48.9 \pm 6.1	52.3 \pm 5.5	58.8 \pm 12.7	53.2 \pm 4.4	46.4 \pm 8.2	58.9 \pm 6.2
Deer	46.5 \pm 10.7	65.7 \pm 5.9	56.4 \pm 10.6	67.3 \pm 6.4	55.9 \pm 10.7	67.2 \pm 4.5
Dog	54.4 \pm 6.3	52.7 \pm 8.1	22.8 \pm 2.0	50.9 \pm 2.7	53.7 \pm 6.0	63.7 \pm 7.7
Frog	53.4 \pm 17.4	53.1 \pm 6.8	60.2 \pm 15.9	60.7 \pm 8.6	53.6 \pm 9.9	70.2 \pm 5.1
Horse	52.7 \pm 5.1	43.5 \pm 6.1	78.6 \pm 13.1	56.0 \pm 4.6	54.8 \pm 7.6	63.8 \pm 5.2
Ship	55.6 \pm 13.5	57.3 \pm 9.0	70.8 \pm 7.9	68.1 \pm 10.4	67.4 \pm 6.4	71.3 \pm 7.2
Truck	60.8 \pm 8.1	33.6 \pm 5.2	69.8 \pm 6.6	57.2 \pm 12.0	61.1 \pm 5.5	65.3 \pm 5.2
Avg	52.0 \pm 9.8	50.8 \pm 6.7	57.9 \pm 11.0	57.1 \pm 7.3	56.4 \pm 7.8	64.9 \pm 5.9
MNIST						
0	46.6 \pm 19.4	63.4 \pm 14.1	78.6 \pm 12.7	73.1 \pm 5.9	77.2 \pm 9.1	75.2 \pm 5.8
1	82.5 \pm 18.1	81.6 \pm 5.6	69.8 \pm 7.9	88.7 \pm 5.0	80.2 \pm 18.3	79.2 \pm 6.9
2	56.0 \pm 6.3	43.0 \pm 9.2	67.0 \pm 7.9	60.9 \pm 14.4	72.5 \pm 4.4	74.3 \pm 3.4
3	63.1 \pm 1.7	54.3 \pm 8.7	61.8 \pm 29.4	77.0 \pm 3.2	80.7 \pm 6.9	94.3 \pm 4.8
4	53.6 \pm 8.4	59.1 \pm 10.4	63.2 \pm 5.1	66.9 \pm 8.4	63.8 \pm 5.9	81.6 \pm 7.6
5	60.2 \pm 6.6	61.9 \pm 9.5	65.2 \pm 4.0	72.1 \pm 8.3	54.5 \pm 12.8	80.3 \pm 7.2
6	59.0 \pm 11.7	65.5 \pm 6.7	78.2 \pm 4.9	66.2 \pm 20.2	70.2 \pm 4.2	85.7 \pm 3.4
7	49.2 \pm 14.0	70.1 \pm 12.0	70.2 \pm 3.2	69.5 \pm 8.9	66.4 \pm 10.3	76.9 \pm 4.0
8	53.7 \pm 15.6	57.5 \pm 7.4	72.4 \pm 3.7	56.2 \pm 2.1	71.7 \pm 4.7	71.5 \pm 6.2
9	56.3 \pm 8.9	70.3 \pm 7.2	61.8 \pm 9.0	67.6 \pm 4.3	59.8 \pm 5.1	73.5 \pm 6.4
Avg	58.0 \pm 11.1	62.7 \pm 9.1	68.8 \pm 8.8	69.8 \pm 8.1	69.7 \pm 8.2	79.3 \pm 5.6
FashionMNIST						
T-shirt	58.5 \pm 5.6	69.7 \pm 8.1	83.5 \pm 6.9	79.7 \pm 2.9	71.8 \pm 14.1	77.3 \pm 4.3
Trouser	32.0 \pm 18.6	95.2 \pm 1.7	63.5 \pm 9.2	55.5 \pm 4.3	76.0 \pm 3.7	97.2 \pm 1.4
Pullover	73.7 \pm 8.7	68.0 \pm 8.9	66.7 \pm 7.3	56.9 \pm 12.1	69.1 \pm 5.6	80.3 \pm 4.2
Dress	43.0 \pm 9.8	80.9 \pm 6.6	63.1 \pm 16.3	72.5 \pm 10.5	76.9 \pm 13.1	83.8 \pm 4.0
Coat	73.3 \pm 4.9	63.5 \pm 15.1	63.6 \pm 12.0	52.2 \pm 16.1	66.2 \pm 18.8	79.0 \pm 9.2
Sandals	39.1 \pm 26.4	74.3 \pm 8.4	64.9 \pm 9.8	78.5 \pm 9.7	57.9 \pm 10.1	85.5 \pm 4.5
Shirt	70.2 \pm 2.7	64.9 \pm 8.9	75.1 \pm 6.2	56.1 \pm 5.6	72.8 \pm 3.1	69.0 \pm 2.4
Sneaker	58.1 \pm 25.7	90.5 \pm 9.1	59.1 \pm 12.0	92.6 \pm 2.1	69.2 \pm 1.7	97.9 \pm 0.7
Bag	70.2 \pm 2.1	53.6 \pm 7.4	72.4 \pm 3.3	92.2 \pm 9.1	71.7 \pm 9.9	77.2 \pm 15.4
Ankle-Boot	73.2 \pm 9.2	81.9 \pm 14.7	71.2 \pm 8.5	62.0 \pm 5.8	61.6 \pm 10.6	91.7 \pm 6.1
Avg	59.1 \pm 11.4	74.2 \pm 8.9	68.3 \pm 9.2	69.8 \pm 7.8	69.3 \pm 9.1	83.9 \pm 5.2

Table 4. Average AUC (with standard deviation) for **One-Shot** anomaly detection experiments on Paris, CIFAR10, FashionMNIST and MNIST datasets.

Class	PatchSVDD	DROCC	DeepSVDD	GEOM	GOAD	Ours
PARIS						
Defense	51.5 \pm 3.3	69.3 \pm 4.5	62.1 \pm 3.3	59.4 \pm 2.7	52.8 \pm 5.1	67.8 \pm 3.4
Eiffel	51.2 \pm 4.3	66.8 \pm 3.5	55.4 \pm 2.8	44.1 \pm 6.6	53.0 \pm 3.0	67.0 \pm 2.7
Invalides	45.2 \pm 2.1	62.9 \pm 6.4	66.6 \pm 4.9	59.2 \pm 2.0	52.2 \pm 4.5	80.8 \pm 2.5
Louvre	41.1 \pm 2.0	66.6 \pm 3.3	60.4 \pm 4.3	53.3 \pm 1.8	52.3 \pm 2.7	72.5 \pm 2.8
Moulinrouge	59.6 \pm 3.1	44.1 \pm 5.4	62.4 \pm 5.1	49.0 \pm 0.3	45.9 \pm 7.3	84.5 \pm 2.4
Museedorsay	53.9 \pm 2.7	46.8 \pm 9.6	88.0 \pm 3.3	88.7 \pm 3.2	43.0 \pm 15.2	89.6 \pm 1.8
Notredame	47.7 \pm 2.8	48.7 \pm 6.6	62.6 \pm 3.5	58.4 \pm 1.7	48.2 \pm 5.7	79.7 \pm 4.0
Pantheon	58.4 \pm 5.2	49.2 \pm 6.6	74.9 \pm 2.5	60.7 \pm 1.8	52.3 \pm 2.3	86.1 \pm 2.1
Pompidou	58.7 \pm 3.4	45.7 \pm 7.4	75.6 \pm 3.4	70.0 \pm 2.7	54.1 \pm 5.8	90.3 \pm 3.4
Sacrecoeur	46.9 \pm 7.8	58.5 \pm 5.1	62.5 \pm 4.3	48.1 \pm 0.8	54.8 \pm 7.2	81.6 \pm 2.7
Triomphe	55.5 \pm 2.6	47.4 \pm 4.4	64.2 \pm 9.4	52.4 \pm 1.7	51.1 \pm 3.8	78.6 \pm 4.8
Avg	51.8 \pm 3.6	55.1 \pm 5.7	66.8 \pm 4.2	58.5 \pm 2.3	50.9 \pm 5.7	79.8 \pm 3.0
CIFAR10						
Plane	40.8 \pm 13.8	69.0 \pm 4.8	35.8 \pm 3.1	62.3 \pm 9.0	59.5 \pm 3.0	69.2 \pm 2.8
Car	59.5 \pm 4.5	39.6 \pm 8.8	74.6 \pm 5.3	65.5 \pm 7.7	68.8 \pm 10.1	77.0 \pm 1.8
Bird	45.7 \pm 6.0	60.9 \pm 3.4	48.4 \pm 5.2	52.4 \pm 4.8	49.4 \pm 3.4	58.4 \pm 2.3
Cat	55.6 \pm 3.2	56.5 \pm 4.9	54.4 \pm 10.7	54.0 \pm 5.2	49.0 \pm 7.0	58.7 \pm 4.3
Deer	44.5 \pm 5.3	57.9 \pm 5.4	51.4 \pm 5.8	63.6 \pm 7.6	48.8 \pm 5.5	66.4 \pm 4.3
Dog	54.4 \pm 3.0	59.4 \pm 6.1	70.4 \pm 6.1	55.5 \pm 3.4	60.9 \pm 11.5	61.8 \pm 3.2
Frog	53.7 \pm 5.6	50.2 \pm 7.7	56.0 \pm 5.7	58.5 \pm 6.9	51.5 \pm 2.7	72.6 \pm 4.4
Horse	55.4 \pm 3.2	43.6 \pm 4.3	69.7 \pm 5.9	64.2 \pm 3.1	62.0 \pm 4.9	68.6 \pm 2.8
Ship	48.3 \pm 10.3	67.5 \pm 6.7	73.4 \pm 4.4	75.5 \pm 7.9	74.2 \pm 3.6	80.2 \pm 3.2
Truck	62.6 \pm 2.2	35.9 \pm 5.5	70.3 \pm 4.7	67.5 \pm 4.0	74.2 \pm 1.7	62.1 \pm 4.5
Avg	52.1 \pm 5.7	54.1 \pm 5.8	60.4 \pm 5.7	59.5 \pm 6.0	59.9 \pm 5.3	67.5 \pm 3.4
MNIST						
0	76.6 \pm 2.5	70.7 \pm 9.0	86.8 \pm 3.2	71.3 \pm 6.3	87.4 \pm 8.0	79.5 \pm 3.8
1	31.5 \pm 9.9	80.6 \pm 7.5	89.6 \pm 5.3	96.2 \pm 0.5	89.2 \pm 6.8	85.5 \pm 6.7
2	73.5 \pm 5.2	56.4 \pm 10.2	73.4 \pm 5.2	78.0 \pm 2.6	71.3 \pm 7.3	81.6 \pm 4.2
3	71.0 \pm 5.5	63.4 \pm 5.3	77.2 \pm 10.7	85.5 \pm 0.7	80.9 \pm 4.6	96.6 \pm 1.0
4	45.0 \pm 5.8	69.6 \pm 3.5	76.8 \pm 5.8	66.4 \pm 5.6	70.3 \pm 5.2	84.7 \pm 1.3
5	62.6 \pm 3.0	69.1 \pm 7.2	65.6 \pm 6.1	79.0 \pm 8.5	70.4 \pm 12.8	89.3 \pm 2.4
6	55.5 \pm 4.3	73.9 \pm 7.5	80.0 \pm 5.7	76.1 \pm 4.6	72.6 \pm 3.9	92.4 \pm 0.9
7	35.2 \pm 8.3	80.4 \pm 7.2	81.0 \pm 5.9	80.3 \pm 3.8	67.1 \pm 5.7	82.0 \pm 3.7
8	64.9 \pm 6.5	64.4 \pm 4.6	82.2 \pm 4.4	70.7 \pm 4.0	73.4 \pm 5.1	79.4 \pm 3.4
9	42.2 \pm 6.4	76.7 \pm 6.3	79.2 \pm 4.7	65.7 \pm 1.9	72.5 \pm 3.9	87.5 \pm 3.2
Avg	55.8 \pm 5.7	70.5 \pm 6.8	79.1 \pm 5.7	76.9 \pm 3.9	75.5 \pm 6.3	85.9 \pm 3.1
FashionMNIST						
T-shirt	52.8 \pm 6.0	85.2 \pm 3.1	89.6 \pm 2.4	92.4 \pm 2.7	79.8 \pm 2.7	85.2 \pm 1.7
Trouser	42.2 \pm 10.7	94.2 \pm 2.2	84.8 \pm 7.1	74.7 \pm 2.7	97.8 \pm 0.5	98.4 \pm 0.5
Pullover	64.7 \pm 7.0	80.5 \pm 3.3	72.3 \pm 7.1	84.3 \pm 3.6	86.4 \pm 2.2	85.8 \pm 3.5
Dress	41.7 \pm 7.6	86.3 \pm 4.4	77.8 \pm 4.9	87.8 \pm 1.0	85.1 \pm 2.0	89.1 \pm 2.4
Coat	62.8 \pm 6.1	81.5 \pm 3.9	76.8 \pm 7.0	78.4 \pm 2.0	83.8 \pm 1.9	88.4 \pm 1.5
Sandals	60.1 \pm 8.5	78.1 \pm 15.0	63.8 \pm 8.0	83.7 \pm 2.0	65.9 \pm 7.6	88.6 \pm 2.1
Shirt	54.8 \pm 6.6	72.0 \pm 3.5	81.5 \pm 8.0	73.8 \pm 3.7	68.0 \pm 3.1	78.2 \pm 1.7
Sneaker	53.0 \pm 10.7	93.2 \pm 1.6	81.6 \pm 7.4	94.6 \pm 1.9	94.4 \pm 1.0	99.1 \pm 0.3
Bag	53.4 \pm 5.3	67.6 \pm 8.7	80.1 \pm 3.1	96.6 \pm 1.4	77.5 \pm 6.0	92.9 \pm 4.1
Ankle-Boot	56.4 \pm 9.1	90.0 \pm 6.9	82.1 \pm 5.4	83.7 \pm 4.7	96.6 \pm 1.5	96.5 \pm 1.0
Avg	54.2 \pm 7.8	82.9 \pm 5.3	79.0 \pm 6.0	85.0 \pm 2.6	83.5 \pm 2.9	90.2 \pm 1.9

Table 5. Average AUC (with standard deviation) for **Five-Shot** anomaly detection experiments on Paris, CIFAR10, FashionMNIST and MNIST datasets.

Class	PatchSVDD	DROCC	DeepSVDD	GEOM	GOAD	Ours
PARIS						
Defense	54.2 \pm 4.1	72.0 \pm 4.5	62.7 \pm 2.3	57.2 \pm 1.6	49.5 \pm 3.3	67.9 \pm 3.2
Eiffel	48.1 \pm 4.8	73.6 \pm 3.3	59.4 \pm 1.9	47.2 \pm 5.6	50.0 \pm 0.0	71.2 \pm 3.7
Invalides	42.7 \pm 2.8	68.0 \pm 4.8	67.4 \pm 2.0	63.4 \pm 1.0	49.9 \pm 0.0	84.9 \pm 1.2
Louvre	39.4 \pm 1.9	73.5 \pm 4.3	60.6 \pm 3.3	53.4 \pm 1.8	49.2 \pm 1.6	74.9 \pm 2.5
Moulinrouge	59.4 \pm 4.3	46.6 \pm 2.5	63.6 \pm 3.4	51.7 \pm 0.8	48.8 \pm 2.2	87.0 \pm 3.1
Museedorsay	58.4 \pm 4.0	52.3 \pm 3.2	89.4 \pm 2.0	86.0 \pm 5.1	55.5 \pm 6.9	90.7 \pm 2.2
Notredame	52.0 \pm 3.2	52.5 \pm 4.6	65.8 \pm 2.9	55.3 \pm 1.0	49.9 \pm 3.1	83.0 \pm 2.9
Pantheon	54.5 \pm 4.9	57.2 \pm 6.4	75.7 \pm 1.6	62.3 \pm 0.8	50.3 \pm 0.7	89.9 \pm 2.1
Pompidou	59.9 \pm 5.6	50.3 \pm 4.6	77.6 \pm 6.0	69.2 \pm 0.8	50.2 \pm 2.7	95.4 \pm 1.3
Sacrecoeur	48.1 \pm 2.4	66.6 \pm 4.9	66.1 \pm 3.4	47.1 \pm 4.1	51.2 \pm 3.1	84.5 \pm 1.9
Triomphe	59.5 \pm 4.0	51.7 \pm 3.9	63.3 \pm 10.3	53.4 \pm 0.6	49.0 \pm 1.1	79.8 \pm 3.4
Avg	52.4 \pm 3.8	60.4 \pm 4.3	68.3 \pm 3.5	58.8 \pm 2.1	50.3 \pm 2.5	82.6 \pm 2.5
CIFAR10						
Plane	40.8 \pm 9.4	71.9 \pm 2.2	39.6 \pm 6.3	66.7 \pm 8.8	61.5 \pm 2.4	69.1 \pm 1.6
Car	59.9 \pm 3.4	42.8 \pm 8.2	64.0 \pm 9.9	74.3 \pm 2.7	68.7 \pm 6.1	80.7 \pm 2.9
Bird	44.8 \pm 3.9	62.4 \pm 4.4	42.4 \pm 11.1	54.4 \pm 6.7	51.3 \pm 3.2	58.5 \pm 2.5
Cat	53.8 \pm 3.7	61.7 \pm 4.3	54.3 \pm 7.3	52.5 \pm 5.7	50.4 \pm 4.8	63.2 \pm 2.8
Deer	50.1 \pm 4.9	62.0 \pm 3.2	50.0 \pm 8.7	54.1 \pm 5.8	52.1 \pm 7.1	64.2 \pm 2.2
Dog	53.3 \pm 4.3	61.3 \pm 3.9	81.6 \pm 3.9	60.5 \pm 5.1	57.1 \pm 5.7	65.4 \pm 5.6
Frog	50.4 \pm 4.7	48.2 \pm 4.6	58.0 \pm 11.9	60.3 \pm 6.8	55.3 \pm 2.3	71.9 \pm 3.3
Horse	53.9 \pm 2.9	51.6 \pm 3.1	76.8 \pm 5.4	62.9 \pm 4.5	61.7 \pm 3.2	73.7 \pm 2.8
Ship	46.0 \pm 8.5	72.6 \pm 3.4	71.6 \pm 3.9	67.8 \pm 8.7	71.3 \pm 2.3	82.9 \pm 0.8
Truck	52.6 \pm 4.2	39.3 \pm 3.5	73.4 \pm 4.2	70.3 \pm 4.0	75.2 \pm 2.5	72.6 \pm 2.9
Avg	50.5 \pm 5.0	57.4 \pm 4.1	61.1 \pm 7.3	62.4 \pm 5.9	60.5 \pm 4.0	70.2 \pm 2.7
MNIST						
0	75.0 \pm 4.7	80.3 \pm 8.0	91.6 \pm 1.1	75.0 \pm 1.0	72.6 \pm 6.8	80.1 \pm 4.6
1	59.3 \pm 13.1	78.0 \pm 12.5	89.0 \pm 5.8	96.2 \pm 0.4	90.9 \pm 3.2	88.8 \pm 3.1
2	58.6 \pm 5.7	58.8 \pm 13.7	73.0 \pm 8.8	80.1 \pm 2.4	68 \pm 5.6	85.2 \pm 4.3
3	62.0 \pm 6.1	66.9 \pm 7.6	82.4 \pm 3.2	91.0 \pm 0.5	73.2 \pm 9.3	96.3 \pm 0.9
4	53.7 \pm 7.8	71.2 \pm 9.8	85.6 \pm 0.9	79.3 \pm 1.1	69.1 \pm 6.2	89.1 \pm 1.6
5	59.8 \pm 5.2	63.7 \pm 8.2	72.4 \pm 4.0	87.2 \pm 0.6	62.1 \pm 13.4	87.4 \pm 3.3
6	53.9 \pm 4.8	74.0 \pm 14.3	88.2 \pm 2.5	83.6 \pm 2.8	73.9 \pm 4.6	92.2 \pm 1.6
7	50.4 \pm 6.5	77.1 \pm 10.8	80.0 \pm 7.5	78.4 \pm 0.7	63 \pm 6.5	84.2 \pm 4.2
8	61.5 \pm 4.8	69.1 \pm 4.8	81.0 \pm 0.9	64.7 \pm 4.0	77.8 \pm 5.4	78.2 \pm 2.3
9	50.6 \pm 7.0	82.9 \pm 6.5	82.6 \pm 3.2	78.7 \pm 4.8	67.5 \pm 6.2	90.2 \pm 1.4
Avg	58.5 \pm 6.6	72.2 \pm 9.6	82.6 \pm 3.8	81.4 \pm 1.8	71.8 \pm 6.7	87.2 \pm 2.7
FashionMNIST						
T-shirt	50.9 \pm 5.5	86.8 \pm 3.3	83.5 \pm 2.1	97.5 \pm 0.5	79.7 \pm 3.0	86.5 \pm 1.1
Trouser	52.9 \pm 12.7	94.4 \pm 4.0	63.6 \pm 4.6	80.2 \pm 0.75	97.5 \pm 1.7	99.0 \pm 0.2
Pullover	69.2 \pm 5.8	81.2 \pm 3.4	66.7 \pm 2.8	90.1 \pm 1.6	89.2 \pm 1.0	86.5 \pm 1.1
Dress	36.9 \pm 8.5	88.1 \pm 3.6	63.1 \pm 0.8	91 \pm 1.7	87.3 \pm 1.5	91.7 \pm 1.3
Coat	67.9 \pm 7.6	84.7 \pm 3.5	63.6 \pm 4.6	88.5 \pm 4.3	86.9 \pm 0.9	88.9 \pm 1.2
Sandals	54.1 \pm 8.6	83.0 \pm 12.4	64.9 \pm 6.4	86.3 \pm 1.0	72.5 \pm 13.1	89.1 \pm 1.6
Shirt	55.6 \pm 7.8	74.8 \pm 3.8	75.1 \pm 3.9	79.5 \pm 2.5	76.3 \pm 2.0	78.5 \pm 0.8
Sneaker	56.8 \pm 7.8	93.3 \pm 1.4	59.1 \pm 3.9	97.8 \pm 0.4	96.3 \pm 1.2	99.0 \pm 0.2
Bag	56.1 \pm 8.1	73.8 \pm 10.2	72.4 \pm 4.6	98.4 \pm 0.3	77.9 \pm 2.5	94.5 \pm 0.4
Ankle-Boot	60.3 \pm 12.8	85.3 \pm 3.7	71.2 \pm 1.1	89.6 \pm 0.7	97.5 \pm 1.0	98.0 \pm 0.6
Avg	56.1 \pm 8.5	84.5 \pm 4.9	68.3 \pm 3.5	89.9 \pm 1.4	86.1 \pm 2.8	91.2 \pm 0.9

Table 6. Average AUC (with standard deviation) for **Ten-Shot** anomaly detection experiments on Paris, CIFAR10, FashionMNIST and MNIST datasets.

Class	PatchSVDD	DROCC	DeepSVDD	GEOM	GOAD	Ours
CIFAR10 (50-Shot)						
Plane	36.7 ± 6.7	76.2 ± 2.6	57.3 ± 2.6	67.8 ± 2.9	55.6 ± 6.4	75.9 ± 5.9
Car	65.5 ± 3.6	44.7 ± 3.0	64.1 ± 1.6	82.4 ± 1.3	54.3 ± 7.9	86.2 ± 1.1
Bird	38.1 ± 2.1	66.3 ± 1.2	46.5 ± 2.2	60.3 ± 3.1	52.0 ± 2.1	57.3 ± 1.9
Cat	51.3 ± 3.9	61.4 ± 4.0	58.5 ± 2.2	59.6 ± 5.1	49.8 ± 0.6	60.5 ± 1.0
Deer	46.3 ± 4.2	58.6 ± 2.9	53.7 ± 3.1	57.4 ± 5.2	50.4 ± 0.9	64.5 ± 1.0
Dog	49.4 ± 3.4	63.3 ± 5.4	61.7 ± 2.3	68.6 ± 2.6	51.8 ± 3.8	74.7 ± 2.1
Frog	54.0 ± 5.6	45.8 ± 2.6	58.0 ± 2.7	64.8 ± 2.8	50.7 ± 1.0	73.2 ± 1.6
Horse	55.4 ± 3.1	47.4 ± 2.6	62.3 ± 3.2	72.4 ± 3.1	52.7 ± 5.4	74.5 ± 3.3
Ship	44.0 ± 2.4	74.7 ± 2.7	75.1 ± 1.1	81.4 ± 1.7	59.3 ± 12.1	85.6 ± 0.6
Truck	60.7 ± 4.7	37.4 ± 5.12	71.9 ± 1.9	81.1 ± 2.1	60.4 ± 11.0	76.8 ± 1.2
Avg	50.1 ± 4.0	57.6 ± 3.2	60.9 ± 2.3	69.6 ± 3.0	53.7 ± 5.1	72.9 ± 2.0
CIFAR10 (80-Shot)						
Plane	34.0 ± 4.5	79.0 ± 0.6	60.9 ± 2.1	69.9 ± 1.6	52.1 ± 4.3	74.8 ± 0.3
Car	63.8 ± 6.9	43.2 ± 2.1	60.1 ± 0.8	85.3 ± 0.8	59.2 ± 11.3	88.0 ± 1.5
Bird	40.0 ± 1.6	68.2 ± 0.3	44.6 ± 1.2	60.8 ± 2.4	50.7 ± 1.4	62.4 ± 1.2
Cat	54.9 ± 1.3	55.7 ± 4.0	58.7 ± 0.2	62.9 ± 1.3	53.8 ± 4.6	60.1 ± 1.4
Deer	50.0 ± 1.8	57.2 ± 3.4	56.3 ± 0.8	62.7 ± 0.3	50.1 ± 2.4	66.1 ± 0.5
Dog	48.2 ± 3.2	64.4 ± 1.9	60.9 ± 1.7	76.5 ± 1.2	52.5 ± 5.0	78.4 ± 1.1
Frog	57.0 ± 2.3	50.9 ± 6.9	58.5 ± 2.5	69.9 ± 4.0	51.5 ± 7.1	75.3 ± 5.4
Horse	56.7 ± 1.8	47.6 ± 2.1	60.9 ± 0.1	79.9 ± 0.4	52.1 ± 3.9	82.3 ± 0.2
Ship	44.0 ± 3.5	77.0 ± 2.1	74.8 ± 0.1	84.0 ± 1.2	70.4 ± 10.5	87.4 ± 0.8
Truck	61.2 ± 2.9	42.4 ± 1.1	72.1 ± 1.7	83.4 ± 0.3	69.7 ± 9.9	81.2 ± 0.6
Avg	51.0 ± 3.0	58.5 ± 2.5	60.8 ± 1.1	73.5 ± 1.4	56.2 ± 6.1	75.6 ± 1.3

Table 7. Average AUC (with standard deviation) for **50-shot** and **80-shot** anomaly detection experiments on CIFAR10.

Class	DifferNet	DROCC	PatchSVDD	DeepSVDD	GEOM	GOAD	Ours1	Ours2
MVTec (One-Shot)								
Bottle	98.2 ± 0.4	67.2 ± 6.6	60.9 ± 12.3	16.6 ± 5.3	79.0 ± 3.5	51.6 ± 14.0	76.3 ± 6.9	85.0 ± 3.7
Cable	76.6 ± 5.9	68.1 ± 4.3	58.8 ± 4.5	39.0 ± 3.5	64.2 ± 1.3	47.9 ± 2.4	72.3 ± 3.7	61.1 ± 7.8
Capsule	57.7 ± 4.6	50.2 ± 6.4	57.9 ± 12.1	44.8 ± 4.4	55.4 ± 2.6	51.2 ± 3.7	56.0 ± 8.4	62.6 ± 6.7
Carpet	61.5 ± 3.0	71.9 ± 10.6	45.5 ± 18.8	41.2 ± 18.2	55.0 ± 10.1	48.1 ± 1.9	72.7 ± 6.7	83.7 ± 8.7
Grid	59.2 ± 5.1	50.0 ± 4.6	37.2 ± 12.2	79.7 ± 8.6	40.1 ± 13.1	9.4 ± 6.8	73.2 ± 9.8	87.1 ± 5.0
Hazelnut	90.7 ± 2.7	66.4 ± 7.6	46.7 ± 16.1	29.1 ± 4.3	47.8 ± 3.6	47.6 ± 3.2	82.4 ± 8.7	66.5 ± 9.2
Leather	83.4 ± 1.9	79.1 ± 6.5	61.9 ± 15.6	48.0 ± 3.2	33.2 ± 0.5	58.1 ± 6.8	98.2 ± 0.9	97.6 ± 1.1
Metalnut	44.4 ± 8.0	51.9 ± 3.6	50.4 ± 13.1	42.6 ± 14.7	52.3 ± 4.2	7.2 ± 6.5	66.0 ± 11.0	60.3 ± 8.6
Pill	71.7 ± 4.4	72.5 ± 4.0	57.6 ± 8.1	33.5 ± 4.0	67.0 ± 2.3	62.5 ± 8.1	56.5 ± 9.6	66.5 ± 7.0
Screw	61.8 ± 7.7	57.7 ± 9.0	53.7 ± 18.2	70.1 ± 10.8	34.7 ± 11.1	6.3 ± 10.0	93.5 ± 6.2	92.8 ± 6.0
Tile	87.3 ± 2.6	65.6 ± 2.0	57.3 ± 4.7	40.7 ± 2.8	61.0 ± 2.8	6.0 ± 5.4	80.2 ± 8.2	84.4 ± 3.8
Toothbrush	52.1 ± 2.3	68.9 ± 4.5	63.7 ± 6.1	35.5 ± 1.5	65.7 ± 6.5	54.4 ± 5.4	67.3 ± 4.7	64.7 ± 11.1
Transistor	47.0 ± 6.5	59.9 ± 3.3	66.7 ± 14.5	32.8 ± 4.3	58.1 ± 1.5	61.7 ± 4.4	66.1 ± 7.7	62.7 ± 6.8
Wood	96.0 ± 2.2	70.6 ± 14.4	55.7 ± 18.4	44.0 ± 16.4	52.3 ± 1.1	41.8 ± 6.5	89.0 ± 4.2	85.5 ± 7.9
Zipper	52.7 ± 3.7	49.6 ± 7.5	69 ± 5.4	34.9 ± 2.8	58.3 ± 2.8	56.8 ± 4.0	67.8 ± 6.4	73.2 ± 7.7
Avg	69.4 ± 4.1	63.3 ± 6.3	56.2 ± 12.0	42.1 ± 7.0	54.9 ± 4.5	44.0 ± 5.9	74.5 ± 6.9	75.6 ± 6.7
MVTec (Five-Shot)								
Bottle	98.4 ± 0.2	68.1 ± 2.6	61.1 ± 12.4	15.7 ± 2.8	80.0 ± 1.2	51.7 ± 10.4	74.1 ± 7.8	90.8 ± 3.7
Cable	81.3 ± 2.0	68.7 ± 2.7	49 ± 3.9	32.8 ± 4.9	61.1 ± 3.1	46.3 ± 4.4	75.2 ± 4.8	76.1 ± 4.0
Capsule	59.0 ± 2.2	53.2 ± 5.1	55.1 ± 3.4	45.3 ± 4.7	60.0 ± 2.3	47.7 ± 5.9	52.6 ± 6.5	64.9 ± 5.6
Carpet	62.0 ± 2.2	71.6 ± 10.9	46.5 ± 4.1	47.7 ± 10.5	42.2 ± 6.7	44.2 ± 6.9	73.3 ± 7.6	65.2 ± 6.4
Grid	56.7 ± 3.9	37.3 ± 9.7	41.7 ± 22.1	76.0 ± 11.1	36.8 ± 7.2	21.3 ± 16.4	76.0 ± 4.9	82.4 ± 9.7
Hazelnut	93.8 ± 1.0	70.0 ± 10.9	58.6 ± 17.4	27.7 ± 4.6	31.7 ± 8.2	52.5 ± 3.5	76.8 ± 8.3	84.5 ± 8.8
Leather	83.7 ± 0.8	70.4 ± 7.1	61.6 ± 15.4	43.0 ± 2.0	33.3 ± 0.2	53.2 ± 10.3	99.0 ± 0.3	98.2 ± 0.9
Metalnut	47.2 ± 3.2	59.7 ± 6.2	48.8 ± 9.1	52.9 ± 6.6	36.8 ± 4.3	59.4 ± 5.6	69.4 ± 11.4	76.4 ± 6.5
Pill	79.4 ± 4.4	74.4 ± 3.5	57.5 ± 10.6	34.4 ± 3.5	59.1 ± 3.1	61.5 ± 11.0	51.2 ± 6.8	63.6 ± 4.1
Screw	73.7 ± 5.1	58.3 ± 2.3	43.4 ± 15.1	69.5 ± 3.8	18.5 ± 5.1	9.3 ± 13.6	97.7 ± 3.2	74.8 ± 1.3
Tile	91.1 ± 1.4	65.7 ± 3.1	49.5 ± 3.0	32.4 ± 3.2	56.9 ± 11.1	58.6 ± 3.9	89.0 ± 4.5	81.0 ± 4.4
Toothbrush	57.3 ± 3.6	67.6 ± 3.6	68.3 ± 11.8	34.9 ± 6.7	72.2 ± 2.1	45.3 ± 4.5	72.7 ± 8.1	64.2 ± 7.3
Transistor	55.7 ± 3.9	67.2 ± 4.1	55.3 ± 9.9	30.4 ± 2.6	59.4 ± 2.9	62.8 ± 4.0	78.2 ± 4.2	76.2 ± 3.9
Wood	96.4 ± 1.9	77.7 ± 11.9	69.4 ± 14.6	11.0 ± 7.3	66.0 ± 9.8	37.4 ± 9.8	84.5 ± 3.6	96.2 ± 1.8
Zipper	46.1 ± 3.7	45.2 ± 6.1	63.9 ± 6.5	34.4 ± 4.6	59.2 ± 6.2	54.1 ± 8.	61.8 ± 7.2	73.3 ± 10.7
Avg	72.1 ± 2.6	63.7 ± 6.0	55.3 ± 10.6	39.2 ± 5.3	51.5 ± 4.9	47.0 ± 7.9	75.4 ± 5.9	77.9 ± 5.3
MVTec (Ten-Shot)								
Bottle	98.2 ± 0.4	67.7 ± 5.1	65.3 ± 9.6	17.6 ± 3.0	80.1 ± 2.5	86.9 ± 4.5	81.9 ± 6.1	90.5 ± 3.1
Cable	82.3 ± 1.5	69.4 ± 3.0	51.1 ± 7.7	32.6 ± 2.5	64.4 ± 0.8	46.0 ± 9.9	73.9 ± 4.2	77.6 ± 3.9
Capsule	58.0 ± 2.1	51.8 ± 6.3	64.4 ± 11.1	44.7 ± 2.9	65.9 ± 0.8	47.3 ± 2.0	55.8 ± 7.7	59.3 ± 8.4
Carpet	61.8 ± 1.5	75.1 ± 16.4	49.4 ± 7.4	40.0 ± 11.6	41.4 ± 7.0	50.9 ± 8.5	66.9 ± 9.6	63.9 ± 6.8
Grid	58.5 ± 2.1	37.5 ± 17.1	49.8 ± 11.1	67.1 ± 10.6	10.3 ± 6.7	54.0 ± 7.1	71.0 ± 8.6	79.0 ± 5.9
Hazelnut	93.2 ± 1.3	72.7 ± 11.9	37.9 ± 12.0	30.5 ± 5.2	45.1 ± 1.6	49.6 ± 2.7	72.1 ± 8.2	79.3 ± 11.3
Leather	83.4 ± 0.9	79.1 ± 13.8	49.3 ± 15.9	43.5 ± 2.8	32.7 ± 0.8	61.2 ± 5.2	99.1 ± 0.2	98.5 ± 0.5
Metalnut	53.4 ± 7.4	59.1 ± 6.6	62.3 ± 12.5	52.4 ± 3.9	49.3 ± 1.4	58.6 ± 6.7	60.4 ± 11.8	74.0 ± 8.4
Pill	81.8 ± 3.5	77.6 ± 3.6	65.2 ± 8.4	39.1 ± 3.9	56.1 ± 1.2	64.1 ± 3.0	57.4 ± 10.4	66.5 ± 7.0
Screw	78.3 ± 4.3	84.2 ± 19.8	28.8 ± 21.3	65.2 ± 4.3	8.5 ± 6.3	66.7 ± 0.8	93.9 ± 8.4	75.7 ± 19.0
Tile	91.3 ± 1.2	64.8 ± 4.2	49.0 ± 3.1	26.0 ± 5.0	62.0 ± 0.3	54.3 ± 3.5	87.6 ± 5.5	81.4 ± 6.9
Toothbrush	57.5 ± 4.0	67.9 ± 3.3	67.3 ± 9.6	38.2 ± 7.6	71.5 ± 0.4	51.3 ± 8.6	78.9 ± 8.5	69.5 ± 7.7
Transistor	54.6 ± 3.7	72.5 ± 3.6	60.3 ± 6.2	24.6 ± 4.5	58.9 ± 3.1	56.0 ± 8.4	74.9 ± 3.7	79.2 ± 4.7
Wood	96.2 ± 1.9	84.0 ± 8.2	47.9 ± 12.3	18.3 ± 11.6	67.7 ± 5.5	37.4 ± 5.9	85.0 ± 5.9	95.8 ± 1.1
Zipper	55.2 ± 6.1	50.0 ± 6.7	66.7 ± 4.8	36.1 ± 4.5	60.9 ± 2.2	53.1 ± 12.3	72.8 ± 6.5	80.4 ± 5.9
Avg	73.6 ± 2.8	67.6 ± 8.6	54.3 ± 10.2	38.4 ± 5.6	51.6 ± 2.7	55.8 ± 5.9	75.4 ± 7.0	78.0 ± 6.7

Table 8. Average AUC (with standard deviation) for **One-Shot**, **Five-Shot** and **Ten-Shot** defect detection experiments on MVTec dataset. **Ours1** refers to our method where the standard set of transformations are used, as for anomaly detection. For a fair comparison with DifferNet, we also consider **Ours2**, where only the four rotation are used, as in DifferNet. In the one-shot case, we report the results of using 5% of the patches, while in five-shot and ten-shot case we report the results of using 10% of the patches. The full results of using different percentage of patches are given in Tab. 10

Class	Ours	(a)	(b)	(c)	(d)	(e)	(f)	(g)
CIFAR10 (One-Shot Ablation)								
Plane	67.2 ± 5.8	58.9 ± 12.5	65.2 ± 10.6	65.2 ± 5.6	59.9 ± 9.9	60.1 ± 5.9	27.0 ± 0.4	38.2 ± 3.9
Car	65.6 ± 5.9	61.6 ± 7.8	65.5 ± 3.5	58.3 ± 3.6	55.0 ± 8.6	63.6 ± 5.8	59.1 ± 1.4	57.6 ± 4.2
Bird	55.9 ± 5.7	52.6 ± 6.3	56.0 ± 4.2	54.2 ± 3.2	52.9 ± 5.9	48.9 ± 6.8	44.7 ± 1.3	46.3 ± 2.1
Cat	58.9 ± 6.2	53.8 ± 8.0	55.7 ± 3.2	56.8 ± 3.6	48.2 ± 6.6	54.3 ± 5.4	54.9 ± 1.0	66.4 ± 3.1
Deer	67.2 ± 4.5	61.9 ± 6.8	55.7 ± 8.9	56.5 ± 10.1	67.8 ± 2.6	53.6 ± 8.1	51.4 ± 2.8	67.3 ± 5.5
Dog	63.7 ± 7.7	61.0 ± 7.8	53.0 ± 4.1	60.0 ± 3.4	55.8 ± 7.8	57.5 ± 7.6	50.0 ± 2.8	65.9 ± 5.1
Frog	70.2 ± 5.1	65.1 ± 9.9	56.4 ± 8.1	62.5 ± 4.2	62.3 ± 9.6	57.5 ± 8.1	58.0 ± 2.1	68.2 ± 4.2
Horse	63.8 ± 5.2	61.8 ± 7.8	53.7 ± 4.1	59.4 ± 3.5	54.6 ± 7.6	59.7 ± 7.8	51.8 ± 0.5	39.8 ± 3.4
Ship	71.3 ± 7.2	70.4 ± 9.5	65.1 ± 10.2	62.6 ± 7.5	69.5 ± 9.4	58.1 ± 8.5	33.9 ± 2.3	65.1 ± 3.5
Truck	65.3 ± 5.2	60.3 ± 8.8	64.8 ± 4.1	61.2 ± 7.2	50.0 ± 6.2 5	59.1 ± 4.8	46.5 ± 3.3	74.1 ± 3.7
Avg	64.9 ± 5.9	60.7 ± 8.5	59.1 ± 6.1	59.7 ± 5.2	57.6 ± 7.4	57.3 ± 6.9	47.7 ± 1.8	58.8 ± 3.9
CIFAR10 (Five-Shot Ablation)								
Plane	69.2 ± 2.8	68.1 ± 2.7	65.1 ± 8.4	61.4 ± 3.9	57.8 ± 7.8	65.9 ± 3.9	25.9 ± 0.3	50.7 ± 3.1
Car	77.0 ± 1.8	75.2 ± 4.6	59.2 ± 8.6	70.2 ± 2.7	56.7 ± 4.9	70.6 ± 5.1	60.0 ± 1.0	73.1 ± 2.7
Bird	58.4 ± 2.3	52.7 ± 2.2	58.4 ± 3.3	56.2 ± 2.4	58.9 ± 6.5	51.5 ± 5.1	45.2 ± 0.6	50.4 ± 2.0
Cat	58.7 ± 4.3	55.1 ± 4.9	53.7 ± 3.2	58.2 ± 4.2	50.4 ± 7.6	53.8 ± 5.9	55.7 ± 1.0	56.3 ± 2.5
Deer	66.4 ± 4.3	63.1 ± 4.2	66.2 ± 5.5	61.3 ± 4.9	64.9 ± 4.9	60.2 ± 3.5	50.9 ± 0.7	59.4 ± 5.0
Dog	61.8 ± 3.2	57.4 ± 9.6	53.5 ± 2.9	61.2 ± 3.9	50.5 ± 8.3	64.1 ± 3.3	51.4 ± 1.5	60.9 ± 4.0
Frog	72.6 ± 4.4	66.1 ± 4.7	67.1 ± 8.3	66.3 ± 6.8	65.4 ± 0.3	64.1 ± 2.5	57.7 ± 0.8	69.1 ± 4.1
Horse	68.6 ± 2.8	67.6 ± 5.9	55.3 ± 3.0	63.3 ± 2.6	55.5 ± 11.4	66.9 ± 5.7	51.8 ± 0.4	66.9 ± 3.0
Ship	80.2 ± 3.2	76.2 ± 5.2	66.2 ± 6.2	67.5 ± 6.0	65.3 ± 6.8	72.2 ± 5.5	34.1 ± 1.2	76.4 ± 3.2
Truck	62.1 ± 3.4	67.8 ± 3.8	55.3 ± 7.2	66.5 ± 3.7	53.0 ± 3.2	68.7 ± 5.9	47.4 ± 1.5	74.3 ± 3.1
Avg	67.5 ± 3.4	64.9 ± 4.8	60.0 ± 5.7	63.4 ± 4.1	57.8 ± 6.2	63.8 ± 4.6	48.0 ± 0.9	63.7 ± 3.3

Table 9. **Ablation analysis** for **One-Shot** and **Five-Shot** anomaly detection, as described in the main text, Sec. 4.3, Tab. 1. Our method relies on three components: (1) a generative model, (2) its hierarchical multi-scale nature, and (3) a transformation-discriminating component. We assess the contribution of these components separately. The columns of the table represent different variants: (a) no generative component, (b) transformations not applied discriminatively, (c) as for (b), but where augmentations are applied before passing real and generated images to the discriminator. (d) a single scale of the hierarchy where small patches are considered (image size set to 100×100), (e) a single scale of the hierarchy where large patches are considered (image size set to 20×20), (f) no component is used and the anomaly score is the MSE between the test image and the training image (average for each training image for five-shot). Finally, the last variant (g) trains a GEOM model on 6,000 images sampled from our generative model that is trained on a one/five sample.

Fraction (%)	1	5	10	20	50	100
MVTec (One-Shot)						
Bottle	75.4 \pm 12.6	85.0 \pm 3.7	76.5 \pm 9.0	82.5 \pm 9.0	81.6 \pm 6.3	67.0 \pm 9.4
Cable	57.4 \pm 9.3	61.1 \pm 7.8	67.8 \pm 3.6	59.7 \pm 11.9	62.0 \pm 10.7	54.0 \pm 10.6
Capsule	59.2 \pm 11.4	62.6 \pm 6.7	59.7 \pm 6.2	61.9 \pm 6.4	57.5 \pm 6.0	58.4 \pm 7.9
Carpet	81.4 \pm 7.7	83.7 \pm 8.7	81.6 \pm 9.2	84.4 \pm 4.9	80.2 \pm 10.4	69.8 \pm 8.2
Grid	91.3 \pm 4.8	87.1 \pm 5.0	83.3 \pm 7.1	82.6 \pm 5.2	71.7 \pm 7.9	58.7 \pm 8.4
Hazelnut	67.0 \pm 10.1	66.5 \pm 9.2	69.3 \pm 10.0	67.4 \pm 8.4	61.6 \pm 13.9	65.2 \pm 10.1
Leather	98.0 \pm 1.1	97.6 \pm 1.1	96.7 \pm 1.8	95.4 \pm 2.8	93.7 \pm 4.2	81.7 \pm 11.6
Metal-nut	69.4 \pm 14.0	60.3 \pm 8.6	65.8 \pm 9.9	64.9 \pm 10.4	61.9 \pm 13.6	67.0 \pm 9.8
Pill	66.8 \pm 5.9	66.5 \pm 7.0	66.1 \pm 6.9	64.3 \pm 6.3	64.7 \pm 8.2	59.0 \pm 7.4
Screw	92.9 \pm 6.4	92.8 \pm 6.0	89.1 \pm 6.9	89.9 \pm 7.0	87.7 \pm 6.9	61.8 \pm 6.9
Tile	85.1 \pm 3.0	84.4 \pm 3.8	83.0 \pm 8.9	84.2 \pm 4.1	79.1 \pm 5.4	57.7 \pm 4.4
Toothbrush	61.9 \pm 11.5	64.7 \pm 11.1	57.5 \pm 5.9	58.4 \pm 6.6	59.1 \pm 6.4	56.9 \pm 7.4
Transistor	60.3 \pm 7.3	62.7 \pm 6.8	67.8 \pm 5.8	63.9 \pm 8.4	64.3 \pm 8.4	66.8 \pm 10.2
Wood	82.0 \pm 11.7	85.5 \pm 7.9	81.7 \pm 9.9	82.9 \pm 9.9	81.2 \pm 11.4	71.7 \pm 11.1
Zipper	78.3 \pm 8.7	73.2 \pm 7.7	71.4 \pm 9.7	72.5 \pm 6.3	72.7 \pm 4.9	63.6 \pm 14.9
Avg	75.1 \pm 8.4	75.6 \pm 6.7	74.5 \pm 7.4	74.3 \pm 7.2	71.9 \pm 8.3	63.9 \pm 9.2
MVTec (Five-Shot)						
Bottle	87.1 \pm 6.5	90.2 \pm 6.7	90.8 \pm 3.7	88.3 \pm 5.9	86.3 \pm 9.6	84.4 \pm 5.0
Cable	71.6 \pm 3.4	74.0 \pm 3.4	76.1 \pm 4.0	74.5 \pm 4.1	74.7 \pm 4.5	74.3 \pm 4.5
Capsule	56.0 \pm 6.1	60.2 \pm 8.5	64.9 \pm 5.6	57.0 \pm 7.7	50.2 \pm 6.8	51.1 \pm 5.5
Carpet	76.3 \pm 9.1	72.9 \pm 8.0	65.2 \pm 6.4	59.7 \pm 11.4	62.6 \pm 10.9	46.6 \pm 6.8
Grid	90.3 \pm 4.5	86.8 \pm 4.7	82.4 \pm 9.7	78.1 \pm 7.9	68.2 \pm 3.9	51.8 \pm 6.2
Hazelnut	83.6 \pm 4.2	82.2 \pm 8.0	84.5 \pm 8.8	76.7 \pm 8.8	78.6 \pm 7.7	70.4 \pm 10.8
Leather	98.8 \pm 0.9	98.6 \pm 0.7	98.2 \pm 0.9	96.9 \pm 1.3	95.4 \pm 2.2	76.6 \pm 8.4
Metal-nut	70.1 \pm 8.7	72.1 \pm 7.7	76.4 \pm 6.5	70.0 \pm 7.2	75.3 \pm 8.0	80.5 \pm 5.3
Pill	66.4 \pm 6.3	64.3 \pm 7.5	63.6 \pm 4.1	63.1 \pm 8.6	60.6 \pm 6.4	60.0 \pm 4.3
Screw	77.4 \pm 8.3	76.4 \pm 6.7	74.8 \pm 1.3	64.1 \pm 11.5	56.5 \pm 13.1	43.1 \pm 5.9
Tile	81.9 \pm 6.3	80.4 \pm 6.0	81.0 \pm 4.4	75.4 \pm 9.7	73.6 \pm 9.4	50.2 \pm 4.9
Toothbrush	61.2 \pm 6.2	62.2 \pm 8.9	64.2 \pm 7.3	60.9 \pm 10.5	60.9 \pm 7.7	62.2 \pm 4.6
Transistor	74.8 \pm 4.5	74.4 \pm 6.4	76.2 \pm 3.9	76.4 \pm 6.6	80.2 \pm 8.0	78.7 \pm 5.1
Wood	95.7 \pm 1.9	96.4 \pm 2.1	96.2 \pm 1.8	94.7 \pm 3.0	93.0 \pm 4.9	93.5 \pm 6.5
Zipper	79.2 \pm 8.1	74.8 \pm 8.8	73.3 \pm 10.7	75.0 \pm 7.9	74.8 \pm 6.6	78.6 \pm 6.7
Avg	78.0 \pm 5.7	77.7 \pm 6.3	77.9 \pm 5.3	74.0 \pm 7.5	72.7 \pm 7.3	66.8 \pm 6.0
MVTec (Ten-Shot)						
Bottle	92.4 \pm 3.3	92.7 \pm 2.6	90.5 \pm 3.1	90.7 \pm 4.7	90.2 \pm 2.4	85.9 \pm 3.8
Cable	75.2 \pm 5.2	76.9 \pm 4.1	77.6 \pm 3.9	75.6 \pm 4.5	74.8 \pm 4.1	74.7 \pm 3.5
Capsule	57.9 \pm 7.5	60.1 \pm 8.7	59.3 \pm 8.4	52.1 \pm 6.6	58.5 \pm 6.6	51.9 \pm 6.6
Carpet	64.4 \pm 7.0	60.7 \pm 4.1	63.9 \pm 6.8	52.6 \pm 5.8	52.9 \pm 1.8	44.9 \pm 1.1
Grid	88.1 \pm 7.1	83.7 \pm 5.3	79.0 \pm 5.9	73.9 \pm 7.7	65.8 \pm 6.4	52.6 \pm 4.5
Hazelnut	80.7 \pm 6.3	82.9 \pm 6.7	79.3 \pm 11.3	80.3 \pm 6.5	74.5 \pm 10.6	68.5 \pm 11.1
Leather	99.2 \pm 0.7	99.1 \pm 0.6	98.5 \pm 0.5	97.7 \pm 1.2	95.6 \pm 1.8	76.1 \pm 8.5
Metal-nut	75.3 \pm 7.6	75.4 \pm 8.5	74.0 \pm 8.4	74.9 \pm 7.7	75.9 \pm 7.6	82.5 \pm 2.6
Pill	64.8 \pm 6.2	65.1 \pm 5.7	66.5 \pm 7.0	60.5 \pm 7.2	56.3 \pm 7.9	59.5 \pm 4.5
Screw	72.4 \pm 7.7	71.7 \pm 9.2	75.7 \pm 19.0	67.8 \pm 15.5	65.9 \pm 15.9	41.5 \pm 3.2
Tile	83.1 \pm 4.6	81.7 \pm 3.9	81.4 \pm 6.9	78.7 \pm 2.7	70.4 \pm 6.4	51.7 \pm 4.9
Toothbrush	61.5 \pm 6.0	63.2 \pm 3.6	69.5 \pm 7.7	59.6 \pm 3.3	60.7 \pm 3.9	64.1 \pm 4.9
Transistor	74.9 \pm 2.0	74.8 \pm 3.7	79.2 \pm 4.7	74.7 \pm 5.6	80.3 \pm 5.2	82.9 \pm 5.3
Wood	94.5 \pm 0.6	95.0 \pm 1.2	95.8 \pm 1.1	94.8 \pm 1.8	95.3 \pm 1.1	95.7 \pm 1.4
Zipper	85.6 \pm 4.9	81.3 \pm 6.6	80.4 \pm 5.9	77.3 \pm 6.9	77.3 \pm 5.8	79.6 \pm 4.7
Avg	78.0 \pm 5.1	77.6 \pm 5.0	78.0 \pm 6.7	74.1 \pm 5.8	73.0 \pm 5.8	67.5 \pm 4.7

Table 10. Effect of using a different **percentage of patches** for defect detection in the **One-Shot**, **Five-Shot** and **Ten-Shot** settings, as described in the main text, Sec. 4.3, Fig. 7.