Supplementary Materials: Channel-wise Knowledge Distillation for Dense
Prediction

S1. Results with feature map on Cityscapes
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Figure 1. Qualitative segmentation results on Cityscapes of
the PSPNet-R18 model: (a) raw images, (b) ground truth (GT),
(c) channel-wise distillation (CD), (d) the best spatial distillation

schemes: attention transfer (AT); and (e) the output of the original
student model without KD.

S2. Results on Pascal VOC and ADE20K

To further demonstrate the effectiveness of the proposed
channel distribution distillation, we only employ the pro-
posed CD on the feature maps as our final results on Pas-
cal VOC and ADE20K. The experiment results are re-
ported in Table 2 and Table 3. Multi student-network vari-
ants with different encoders and decoders are used to vali-
date the efficiency of our method. Here, encoders include
ResNetl18 and MobileNetV2, and decoders include PSP-
head and ASPP-head.

Pascal VOC. We evaluate the performance of our method
on the Pascal VOC dataset. The distillation results are listed

in Table 2. Our proposed CD improves PSPNet-R18 with-
out distillation by 3.83%, outperforms the SKDS and IFVD
by 1.51% and 1.21%. Consistent improvements on other
student networks with different encoders and decoders are
achieved. The gains on PSPNet-MBV2 with our method
is 3.55%, surpassing the SKDS and IFVD by 1.98% and
1.20%. As for Deeplab-R18, our CD improves the stu-
dent from 66.81% to 69.97%, outperforming the SKDS
and IFVD by 1.84% and 1.55% respectively. Besides, the
performance of Deeplab-MBV2 with our distillation is in-
creased from 50.80% to 54.62%, outperforming the SKDS
and IFVD by 2.51% and 1.23% respectively.

ADE20K. We also evaluate our method on the ADE20K
dataset to further demonstrate that CD works better than
other structural knowledge distillation methods. The results
are shown in Table 3. Our proposed CD improves PSPNet-
R18 without distillation by 3.83%, and outperforms the
SKDS and IFVD by 1.51% and 1.21% in several. Notable
performance gains on other student with different encoders
and decoders are also consistently achieved, As for PSPNet-
MBV?2, our method achieves a superior performance of
27.97%, surpassing the student, SKDS and IFVD by 4.82%,
3.18% and 2.64%. The gain on Deeplab-R18 with our CD is
2.48%, outperforming the SKDS and IFVD by 1.85% and
0.84%. Finally, the performance of Deeplab-MBV2 with
our channel-wise distillation is increased from 24.98% to
29.18%, outperforming the SKDS and IFVD by 3.08% and
1.93% respectively.

S3. More visualization results

We list the visualization results in Figure 2 to intu-
itively demonstrate that, the channel distribution distillation
method (CD) outperforms the spatial distillation strategy
(attention transfer). Besides, to evaluate the effectiveness
of the proposed channel distribution distillation, we visu-
alize the channel distribution of the student network under
three paradigms, i.e., original network, distilled by the at-
tention transfer (AT) and channel distribution distillation re-
spectively, in Figure 3 and Figure 4. We also present the
visualization results in Figure ?? to intuitively demonstrate
that, the channel distillation method (CD) outperforms the
spatial distillation strategy.



Method Params (M) | FLOPs (G) mloU (%)
Val Test
ENet [1] 0.358 3.612 — 58.3
ESPNet [28] 0.363 4.422 - 60.3
ERFNet [8] 2.067 25.60 - 68.0
ICNet [44] 26.50 28.30 — 69.5
FCN [18] 134.5 333.9 — 62.7
RefineNet [21] 118.1 525.7 — 73.6
OCNet [38] 62.58 548.5 - 80.1
Results w/ and w/o distillation schemes
T:PSPNet [45] 70.43 574.9 78.5 78.4
S:PSPNet-R18°(0.5) 3.835 31.53 55.40 | 54.10
+SKDS [23] 3.835 31.53 61.60 | 60.50
+SKDD [24] 3.835 31.53 62.35 -
+IFVD [33] 3.835 31.53 63.35 | 63.68
+Ours 3.835 31.53 67.26 | 67.33
S:PSPNet-R18° 13.07 125.8 57.50 | 56.00
+SKDS [23] 13.07 125.8 63.20 | 62.10
+SKDD [24] 13.07 125.8 64.68 —
+IFVD [33] 13.07 125.8 66.63 | 65.72
Ours 13.07 125.8 70.04 | 70.11
S:PSPNet-R18* 13.07 125.8 69.72 | 67.60
+SKDS [23] 13.07 125.8 72.70 | 71.40
+SKDD [24] 13.07 125.8 74.08 -
+IFVD [33] 13.07 125.8 74.54 | 72.74
+Ours 13.07 125.8 74.87 | 73.86
S:PSPNet-MBV2* 1.98 16.40 58.64 | 57.43
+SKDS [23] 1.98 16.40 61.12 | 60.36
+IFVD [33] 1.98 16.40 62.74 | 61.92
+Ours 1.98 16.40 64.37 | 63.12
S:Deeplab-R18¢(0.5) 3.15 31.06 61.83 | 60.51
+SKDS [23] 3.15 31.06 62.71 | 61.69
+IFVD [33] 3.15 31.06 63.12 | 62.37
+Ours 3.15 31.06 65.60 | 64.33
S:Deeplab-R18* 12.62 123.9 73.37 | 72.39
+SKDS [23] 12.62 123.9 73.87 | 72.63
+IFVD [33] 12.62 123.9 74.09 | 72.97
+Ours 12.62 123.9 75.25 | 74.12
S:Deeplab-MBV2* 2.45 20.39 65.94 | 65.07
+SKDS [23] 2.45 20.39 66.73 | 65.81
+IFVD [33] 2.45 20.39 67.04 | 66.12
+Ours 2.45 20.39 67.92 | 66.87

Table 1. Comparison of student variants with the state-of-the-art
distillation methods on Cityscapes, where © denotes to be trained
from scratch and * indicates to be initialized by the weights pre-
trained on ImageNet, and R18 (MBV?2) is the abbreviation for
Resnet18 (MobileNetV2).
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(c) channel-wise distillation (CW), (d) the spatial distillation
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