
RetrievalFuse: Neural 3D Scene Reconstruction with a Database
– Supplemental Document –

Yawar Siddiqui1 Justus Thies1,2 Fangchang Ma3 Qi Shan3 Matthias Nießner1 Angela Dai1

1Technical University of Munich 2Max Planck Institute for Intelligent Systems, Tübingen 3Apple

In this appendix, we discuss additional experiments that
we conducted with our neural 3D scene reconstruction
method RetrievalFuse (Sec. 3). Specifically, we show ad-
ditional ablation studies and results for both the 3D super-
resolution and surface reconstruction. We also provide im-
plementation details of our method and the used baselines
(Section 1), as well as our data generation (Sec. 2). We con-
clude with a discussion about limitations.

1. Implementation Details

Levels of Operation for Scene Reconstruction. Fig. 1
shows the different levels of operation at which our method
operates on to reconstruct a 3D scene. Larger scenes are
split into fixed size windows, chunk retrievals are made on
smaller sized chunks for more expressability, and attention-
based blending works on yet smaller sized patches to allow
the method to choose among different retrievals at a finer
detail.

Network Architecture. Fig. 2 details the architecture of
our networks for 3D super-resolution task. All networks are
implemented in PyTorch [8].

Inference Time and Number of Parameters. We re-
port the number of trainable parameters and the inference
time for our method (both retrieval and refinement stage)
along with that of the baselines in Tab. 1 for the 3D super-
resolution task. All runtimes are reported on a machine
with Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz proces-
sor with an NVIDIA 2080Ti GPU. We use FLANN [7] to
speed up nearest neighbor lookups from the database. Our
retrieval inference time is significantly higher than refine-
ment due to multiple disk reads to retrieve chunks (= num-
ber of chunks × number of retrievals). To avoid this over-
head during training, once the retrieval networks have been
trained, we preprocess the entire training set to extract re-
trievals before starting refinement stage training.

Method Inference Time (s) # Parameters (×106)
SGNN [2] 2.297 0.64
ConvOcc [9] 1.707 1.04
IFNet [1] 0.708 2.95
Ours (Retrieval) 0.784 0.77
Ours (Refinement) 0.012 1.49

Table 1: Comparison of inference time and number of train-
able parameters on the 3D super-resolution task.

1.1. IFNet-based RetrievalFuse

To demonstrate the wide applicability of our method, we
also demonstrate our approach integrated into the implicit-
based reconstruction of IFNet [1] to leverage our retrieved
approximations. We keep the IFNet encoder and decoder
unmodified, and add an additional retrieval encoder for pro-
cessing the retrieved reconstruction approximations. This
retrieval encoder is based on the original IFNet encoder, and

Figure 1: In our experiments, we use 643 target chunks for
target geometry, and larger scenes work in a sliding win-
dow fashion (left). The retrieval candidates are 163 chunks
(middle), and attention-based blending works on 43 patches
(right).



Figure 2: Network architecture used in our 3D super-resolution experiments. Convolution parameters are given as (input
features, output feature, kernel size, stride), with default stride of 1 if not specified. Array of circles represent fully connected
(FC) layers. For the task of point cloud to surface reconstruction, the input chunk embedding network is a convolutional
layer instead of MLP with a fully connected layer at the end on account of larger input chunk size (since input is a 1283

grid for surface reconstruction in comparison to 83 grid for super-resolution, we use a chunk size of 323 for inputs there).
Additionally, the input feature extractor is deeper for point cloud to surface reconstruction on account on bigger input grid.

works with chunks from the retrievals. For a given point in
space, features sampled at the point from feature volumes at
different levels of the input encoder make up the input fea-
tures. Features sampled from the retrieval features volumes
at this point for each of the k retrievals make up the retrieval

features. Next, based on the feature volume at last layer of
input and retrieval encoder, a blending coefficient grid and
an attention weight grid is obtained. To obtain these, the
8 × 8 × 8 input feature volume and the 32 × 32 × 32 re-
trieval feature volume are interpreted as 512 patch volumes



Chunk
side (m)

Retrieval Refinement
IoU↑ CD↓ NC↑ Entries IoU↑ CD↓ NC↑

3.467 0.53 0.074 0.72 43092 0.71 0.029 0.91
1.733 0.60 0.041 0.85 344249 0.72 0.028 0.91
0.867 0.67 0.033 0.87 2093592 0.75 0.026 0.92

Table 2: Smaller sized chunk retrievals improve the per-
formance of both retrieval and refinement, although at cost
of a larger database. Evaluation performed on 3D super-
resolution task on 3DFront dataset.

Variant IoU↑ CD↓ F1↑ NC↑
Retrieval 0.364 0.781 0.525 0.708
Backbone 0.463 0.647 0.602 0.813
Naive 0.432 0.684 0.576 0.798
Ours 0.478 0.635 0.601 0.811

Table 3: In case of suboptimal retrievals, our method does
not provide significant improvement over the backbone re-
construction quality. However, it is more robust to bad re-
trievals compared to a naive blending of retrieval features
with input features. Networks trained on a ShapeNet subset
with 8 classes and evaluated on a disjoined subset with 5
classes.

# Train Scenes IoU↑ CD↓ F1↑
3750 (25%) 0.711 0.0283 0.784
7500 (50%) 0.728 0.0275 0.791
11250 (75%) 0.741 0.0269 0.796
15000 (100%) 0.751 0.0265 0.801

Table 4: Ablation study w.r.t. the number of train scenes,
evaluated on the 3D super-resolution task using the 3DFront
dataset.

of shape 1× 1× 1 and 4× 4× 4 respectively. These input
and corresponding retrieval patch volumes are mapped to a
shared embedding space, from which we can get the blend-
ing coefficient (Eq. 6, main paper) and attention weights
(Eq. 4, main paper). Once we have the blending coefficient
grid and attention weight grid, we can sample their values
at the queried point. Finally we blend the sampled input
features and the sampled k retrieved features (Eq. 5, main
paper) to give the blended feature that is decoded by the
IFNet decoder.

1.2. Baselines

We use the official implementations provided by the au-
thors of IFNet [1], Convolutional Occupancy Networks [6],
SGNN [2], Local Implicit Grids [3] and Screened Pois-
son Reconstruction [4] in our experiments. For 3D super-
resolution experiments, the methods are provided with low-
resolution distance field grids as inputs instead of voxel grid
inputs. In particular, for IFNet we use the ShapeNet32Vox

Figure 3: Integration of our RetrievalFuse approach to the
implicit network of IFNet [1]. We use IFNet’s encoder as
the input feature encoder and their decoder as the implicit
decoder. Additionally, we use a retrieval encoder similar
to the IFNet encoder for obtaining features for the retrieval
approximations. Further, a patch attention layer computes a
blend coefficient grid and attention weight grid. For a given
query point in space, features are sampled from input fea-
ture grids, retrieval feature grids. A blend coefficient value
and attention weights are sampled from the blend coefficient
grid and attention weight grid at the queried point. The sam-
pled input features and retrieval features are blended based
on these valued and finally decoded to an occupancy value
by the IFNet decoder.

model for 3D super-resolution. For surface reconstruction
from point clouds for IFNet, the 1283 discretized point
cloud is used with the ShapeNetPoints model. For Convo-
lutional Occupancy Networks we use the 323 voxel simple
encoder for 3D super-resolution, and a 643 point net local
pool encoder for point cloud surface reconstruction. For
SGNN, we use a 643 resolution with nearest-neighbor up-
sampling to a 643 grid for the input. For Local Implicit
Grids we found that the part sizes 0.25× shape size for
ShapeNet and 0.35× window size for 3DFront and Matter-
port3D worked best at the sparsity of the input point cloud.

2. Data Generation and Evaluation Metrics
Data generation. As specified in the main paper, the tar-
gets for both 3D super-resolution and surface reconstruction
from point cloud tasks are 643 distance field grids. Training
and inference on larger scenes is done in a sliding window
manner with a window stride of 64. We use SDFGen1 to
generate these distance field targets. Low-resolution dis-
tance field inputs are generated in a similar manner at a

1https://github.com/christopherbatty/SDFGen



coarser resolution. Point cloud samples for surface recon-
struction task are generated as random samples on the sur-
face of meshes generated from target distance fields.

For IFNet [1], Convolutional Occupancy Networks [6],
and our implicit variant, all of which need supervision in the
form of points along with their occupancies, we first extract
meshes from the target distance fields using the marching
cubes algorithm [5]. These meshes are then made water-
tight using implicit waterproofing [1] from which points and
their occupancies are finally sampled. SGNN is provided
the same inputs and targets as ours for training, with the re-
spective inputs upsampled to match the target 643 resolution
grid. Local Implicit Grids [3] is trained on ShapeNet, and
Screened Poisson Reconstruction [4] does not require train-
ing; however, both methods are provided high-resolution
normals to obtain oriented point clouds as inputs.

Evaluation Metrics. We follow the definition and imple-
mentations of Chamfer `1 Distance, Normal Consistency,
and F-Score from [9]. Specifically, Chamfer `1 Distance
(CD) is defined as:

CD(Mpred,Mgt) =
1

2
(Acc(Mpred,Mgt)

+Comp(Mpred,Mgt))

whereMpred andMgt are the predicted and target meshes
(obtained by running marching cubes on predicted and tar-
get distance fields). Acc(.) and Comp(.) are accuracy and
completeness given as:

Acc(Mpred,Mgt) =
1

|∂Mpred|

∫
∂Mpred

min
q∈∂Mgt

‖p− q‖ dp,

and

Comp(Mpred,Mgt) =
1

|∂Mgt|

∫
∂Mgt

min
p∈∂Mpred

‖p− q‖dq

with ∂Mpred and ∂Mgt denoting the surfaces of the
meshes. Normal Consistency (NC) is defined as:

NC(Mpred,Mgt) =
1

2
∣∣∂Mpred

∣∣
∫
∂Mpred

∣∣n(p) · n(proj2(p))∣∣dp
+

1

2
∣∣∂Mgt

∣∣
∫
∂Mgt

∣∣n(q) · n(proj1(q))∣∣dq
where (.) indicates inner product, n(p) and n(q) are the
unit normal vectors on the mesh surface, and proj2(p) and
proj1(q) are projections of p and q onto mesh surfaces
∂Mpred and ∂Mgt respectively. F-Score [10] is defined
as the harmonic mean of precision and recall, where recall
is fraction of points onMgt that lie within a certain distance
toMpred, and precision is the fraction of points onMpred

that lie within a certain distance to Mgt. For calculating
the volumetric IoU, we first voxelize the meshesMgt and
Mpred with voxel sizes of 0.054m for 3DFront, 0.0375m

for Matterport3D, and resolutions 643 for ShapeNet. The
IoU is then given as:

IoU =
Voxels(Mpred) ∩Voxels(Mgt)

Voxels(Mpred) ∪Voxels(Mgt)

3. Additional Evaluation
3.1. Ablation Studies

Chunk Embedding Space Visualization. Fig. 5 visual-
izes the embedding space used for retrieving chunks from
our database. Chunks with similar geometry end up lying
closer in this space.

Effect of retrieved chunk size on the performance of our
method. Tab. 2 evaluates our method with retrieval ap-
proximations of different chunk sizes for retrieval. A chunk
size that is too large cannot effectively capture the diver-
sity of various scene arrangements, while smaller sizes can
represent a wider variety of geometry, at the cost of an in-
creased database size.

Effect of number of training scenes used for creating the
database Tab. 4 shows the effect of number of chunks in
the database on our method’s performance. Availability of
a wider variety of chunks helps reconstruction.

3.2. Additional Qualitative Results

We provide additional qualitative evaluation of our
method on 3DFront and Matterport3D super-resolution and
point cloud to surface reconstruction tasks in Fig. 8 and
Fig. 9 respectively. Qualitative evaluation on ShapeNet for
both of the tasks is provided in Fig. 10. Further, additional
qualitative visualization for Effect of retrieval and attention-
based refinement (main paper section 4.3) is provided in
Fig. 4.

4. Additional Discussion
The result in the main paper as well is the additional

experiments in this document show the broad applicabil-
ity of our method, achieving state-of-the-art reconstruction
and super-resolution outputs. Nevertheless, our approach
still has limitations as discussed in the main paper. In par-
ticular, if the retrieval approximations are suboptimal, they
will not help in the refinement process. Fig. 6 visualizes
some samples where the retrieval approximations don’t help
the reconstruction. However, in these cases, even though
the retrievals don’t help the reconstruction, they also don’t
worsen the reconstruction. This is achieved by the blend-
ing network effectively ignoring the retrievals in such cases.
The dependence on good retrievals can be observed more
clearly in the following experiment. We train our retrieval



Figure 4: Additional qualitative evaluation of our method (Ours) in comparison to 1st nearest neighbor retrieval (1-NN Re-
trieval), our refinement network without retrievals (Backbone) and naive fusion of retrieved approximations during refinement
(Naive).

Figure 5: (a) Chunk embedding space visualized for 5000 chunks from 3DFront test set. This embedding space used for
retrievals from the database by projecting an input chunk into this space (visualized as green dots) and retrieving k-nearest
database chunks (visualized by yellow dots) from it. (b) Input queries and their corresponding 4 nearest neighbors from the
embedding space. For the sake of visual clarity, input queries are visualized as their corresponding ground truth reconstruc-
tion.

and refinement networks on a ShapeNet subset of 8 classes.
The dictionary is created using chunks from the same 8
classes. The trained networks are evaluated on a subset of
new 5 classes. As shown in Tab. 3 and Fig. 7, our method
doesn’t improve significantly over the backbone network
due to low quality retrievals. Compared to a naive fusion
of features from retrievals however, which learns to rely on
retrievals during training, our method is more robust.

A limitation of our method is cubic growth in number

of chunks in the database with the decrease in patch size.
As observed in Tab. 2, smaller chunk retrievals help both
retrieval and refinement. This however comes at the cost of
more patches in the database, making the database indexing
and retrieval slower.



Figure 6: Suboptimal retrievals do not improve results significantly over our Backbone network. However, reconstruction
produced are also not degraded due to subobtimal retrievals. Qualitative results from 3DFront super-resolution task.

Figure 7: (Left) Suboptimal retrievals (NN1) when the our method is trained on a ShapeNet subset of 8 classes and evaluated
on another 5 classes. The database contains chunks only from the original 8 classes. In this case, the suboptimal retrievals
don’t help the reconstruction, and the quality of reconstruction does not significantly improve over our backbone network.
However, in contrast to naive fusion of retrieval features, our reconstruction quality does not degrade over the backbone.
(Right) If the database if augmented with new chunks from train set of the new 5 classes, the reconstruction quality visibly
improves without retraining.



Figure 8: Additional qualitative results on 3DFront (left three) and Matterport3D (right three) on 3D super-resolution task.



Figure 9: Additional qualitative results on 3DFront (left three) and Matterport3D (right three) on point cloud to surface
reconstruction task.



Figure 10: Qualitative results on ShapeNet dataset on 3D super-resolution (left three) and point cloud to surface reconstruction
(right three) tasks.
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