
StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement—Appendix

A. Network
In low-level vision tasks, an increasing number of net-

works (e.g. EDSR [12] and CBDNet [5]) remove the batch
normalization (BN) layers [10] commonly used in high-
level vision tasks. Meanwhile, the instance normalization
(IN) layers [16] used in StarGAN [2, 3] are also rarely used
in low-level vision tasks. Our experiments do show that
employing the image classifiers’ backbone networks with a
large number of normalization layers as the style encoder
and the curve encoder leads to poor performance. We sup-
pose that employing too many normalization layers can im-
pair the network’s capability to extract the distribution of
image colors and illumination, which is nevertheless cru-
cial for the image enhancement task. To this end, we tend
to remove all BN and IN layers in the network. Our pro-
posed style encoder and curve encoder are both built on
shallow ResNet [7]. However, if we use the Kaiming ini-
tialization [6] to initialize each layer of ResNet without nor-
malization layers, it can lead to exploding gradients, so we
modify the residual block as follows:

• Replace the ReLU activation function [14] with the
PReLU activation function [6].

• PReLU is adopted before the convolution layer that
refers to pre-activation [8].

• Add a scalar multiplier that is initialized at 1 before
each element-wise addition layer.

• Add a scalar bias that is initialized at 0 before each
convolutional layer, fully-connected (FC) layer, and
PReLU activation layer.

• Initialize the 1st convolution layer of the residual block
using the kaiming initialization, and scale the weight
by L−

1
2 that refers to the Fixup initialization [18],

where L is the total number of convolution layers.

• Initialize the 2nd convolution layer of the residual
block and the FC layer to 0.

For the curve encoder in StarEnhancer, a Dual AdaIN
is further inserted between the two convolution blocks in
the residual block. Specifically, the style encoder extracts
each style’s latent code {f̃d}, and the mapping network then
maps the latent code to style codes {µd,j , σd,j}. Because
the style encoder is inferred on the server, it can be deeper
and wider than the curve encoder. The mapping network
consists of two components: an FC Block further extracts
the features from the latent codes; output branches map

j-t
h

O
ut

pu
t B

ra
nc

h
F

C
 B

lo
ck

PReLU

Conv

bias

multiplier

PReLU

bias

Conv

bias

+

bias

multiplier

multiplier

bias

−𝜇௔,௝

𝜇௕,௝

1 𝜎௔,௝⁄

𝜎௕,௝

……

bias

D
ua

l A
da

IN
1s

t C
on

v 
B

lo
ck

2n
d 

C
on

v 
B

lo
ck

PReLU

FC

PReLU

FC

PReLU

FC

PReLU

FC

PReLU

FC

FC

Sigmoid

𝜇௔,௝

𝜇௕,௝𝜎௔,௝

𝜎௕,௝

……

𝐟ሚ௔ 𝐟ሚ௕

Figure 1: Details of the residual block with Dual AdaIN.

the features to the style codes. Note that the style codes
are updated only when the source and target styles change.
The number of output branches is equal to the number of
Dual AdaINs inserted in the curve encoder, which means
that each output branch corresponds to one Dual AdaIN.
And the output dimension of the output branch is twice the
channel number of the corresponding Dual AdaIN’s feature
maps so that the output vector can be split into µd,j and σd,j .
The sigmoid function is used to ensure that the style code’s
elements are greater than zero, thereby avoiding 1/σd,j be-
ing unavailable. Finally, our proposed modified residual
block is shown in Figure 1.



B. Curve-based color transformation
Using the residual blocks shown in Figure 1, we build the

curve encoder to predict the curve knot points’ parameter
vectors. And the proposed curve-based transformation uses
piecewise cubic interpolation [4] and indexing to utilize the
curve knot points’ parameter vectors.

We consider the curves that map the same color chan-
nel to be the most important, while the curves that map
from pixel’s coordinates only play a complementary role.
Therefore, we assign more knot points to curves that map
the same color channel to make them more expressive, and
fewer knot points to curves that map from pixel’s coordi-
nates to make them smoother. Since the coordinates of the
pixels vary monotonically, applying the transformation of
the curves that map from pixel’s coordinates does not re-
quire any indexing operation. Therefore, although the con-
tribution of the curves that map from pixel’s coordinates is
not significant, it is cost-effective to keep them, considering
its low computational complexity and capability to mimic
tools such as gradient filters.

C. More implementation details
We use some tricks commonly used in face recognition

to improve the performance of the style encoder. Firstly, We
extend the Global Average Pooling (GAP) before the style
encoder’s fully connected layer to parallel GAP and Global
Max Pooling (GMP) and sum the output tensor of GAP and
GMP as the input of the following fully connected layer.
Secondly, we fix the scaling term s (equivalent to the tem-
perature scaling [9]) to 20 for refining the decision boundary
when training the style encoder. Finally, we remove the bias
of the style encoder’s output layer and set its initial learning
rate to 100 times that of the backbone network. The output
layer’s class weights are sometimes called proxies in metric
learning [11, 13, 15, 17], but note that it is not equivalent to
the centers of the classes.

Because the images in the MIT-Adobe-5K dataset [1]
are high-resolution, the images’ loading and pre-processing
consume a lot of time (far more expensive than training).
To this end, we train StarEnhancer on the low-resolution
images and test the trained model on the full-resolution im-
ages. Note that we use random cropping to generate multi-
ple low-resolution versions of the full-resolution image.

We can also add the single sample’s latent code fi as
noise to train a more robust StarEnhancer:

f̃ ′ =
(1− α)f̃+αfi∥∥∥(1− α)f̃+αfi∥∥∥

2

, (1)

where α is a scalar that is sampled from the uniform distri-
bution U on log space as follows:

log(α) ∼ U(log(0.01), log(1)). (2)

D. Additional explanation
Q: Can the multi-curve enhancer be applied to other I2I
translation tasks, such as image dehazing?
A: Unfortunately, it is not directly applicable to other I2I
translation tasks but requires some simple modification. But
we can take the encoder-decoder as the curve encoder to
predict a low-resolution curve parameter map, consisting of
a set of curve parameters (w/o H&W) for each cell (i.e., one
pixel of the parameter map). Guided by the input image,
we can obtain the desired transformed image using the slice
operator. In contrast to the color transformations proposed
in the paper, the modified color transformation is locally
smooth rather than globally shared.
Q: What is the main difference between the proposed
Dual AdaIN and AdaIN?
A: The µ and σ in AdaIN are the mean and variance of the
feature maps, while the two sets (source&target) of µ and σ
in Dual AdaIN are all output by the mapping network. We
note that the IN in AdaIN hurts our method’s performance,
which may be because IN makes feature maps lose impor-
tant statistical properties (e.g., brightness and contrast). In
contrast, Dual AdaIN uses the style encoder to introduce
style information and does not perform any normalization
on the feature maps of the curve encoder.
Q: What is the meaning of the train set and test set for
the unseen style?
A: We extend the FiveK dataset to 18 tonal styles and split
the images of each style into train set and test set in the
same manner. For 10 seen styles, we use the train set for
training the model and collect the style codes. For 8 unseen
styles, we only use the images in the train sets to collect
style codes.
Q: Why use average embedding?
A: When inferring, the model cannot directly obtain the tar-
get style embedding corresponding to the input image be-
cause it can only be fetched by encoding the target style
version of this image (i.e., ground truth). Instead, we use
the normalized average embedding to represent the target
style embedding. In this way, we can use the style encoder
to obtain the average embedding of all styles on the train set
at once and then use the mapping network to get the corre-
sponding µ and σ and save them. When inferring, we only
need to load the saved µ and σ of the specified style without
performing the style encoder and mapping network again.

E. More results
Figures 2 and 3 show some qualitative comparison re-

sults. Figures 4, 5, and 6 show some qualitative results
of the transformations between multiple styles. Figures 7
and 8 show the transformations between seen styles or un-
seen styles. Figures 9 and 10 show some examples of man-
ual fine-tuning.



In
pu

t
D

P
E

H
D

R
N

et
D

ee
pU

P
E

D
ee

pL
P

F
A

3D
L

U
T

St
ar

E
nh

an
ce

r
G

ro
un

d 
T

ru
th

Figure 2: Qualitative comparison results of single style transformation with contemporaneous methods.



Input DPE HDRNet DeepUPE DeepLPF A3DLUT StarEnhancer Ground Truth

Figure 3: Qualitative comparison results of single style transformation with contemporaneous methods.



PS
N

R:
 2

5.
88

PS
N

R:
 3

0.
61

PS
N

R:
 2

7.
15

PS
N

R:
 2

7.
18

PS
N

R:
 3

1.
72

PS
N

R:
 2

6.
21

PS
N

R:
 3

1.
30

PS
N

R:
 2

5.
98

PS
N

R:
 2

3.
84

PS
N

R:
 3

3.
26

PS
N

R:
 3

0.
63

PS
N

R:
 3

3.
68

PS
N

R:
 2

9.
83

PS
N

R:
 3

1.
09

PS
N

R:
 2

9.
33

PS
N

R:
 3

3.
55

PS
N

R:
 3

3.
87

PS
N

R:
 3

2.
15

PS
N

R:
 3

1.
37

PS
N

R:
 2

4.
31

PS
N

R:
 2

2.
99

PS
N

R:
 3

0.
42

PS
N

R:
 2

1.
00

PS
N

R:
 2

5.
41

PS
N

R:
 3

0.
49

So
ur
ce

T
ar
ge

t

St
yl

e 
O

St
yl

e 
P

St
yl

e 
Q

St
yl

e 
X

St
yl

e 
Y

St
yl

e 
A

St
yl

e 
B

St
yl

e 
C

St
yl

e 
D

St
yl

e 
E

Figure 4: An example of mappings between multiple styles.



A→A A→B A→C A→D A→E

B→A B→B B→DB→C B→E

C→A C→B C→C C→D C→E

D→A D→B D→C D→D D→E

E→A E→B E→C E→D E→E

O→A O→B O→C O→D O→E

P→A P→B P→DP→C P→E

Q→A Q→B Q→C Q→D Q→E

X→A X→B X→C X→D X→E

Y→A Y→B Y→C Y→D Y→E

A→O A→P A→Q A→X A→Y

B→O B→P B→XB→Q B→Y

C→O C→P C→Q C→X C→Y

D→O D→P D→Q D→X D→Y

E→O E→P E→Q E→X E→Y

O→O O→P O→Q O→X O→Y

P→O P→P P→XP→Q P→Y

Q→O Q→P Q→Q Q→X Q→Y

X→O X→P X→Q X→X X→Y

Y→O Y→P Y→Q Y→X Y→Y

Figure 5: An example of mappings between all training styles. The images in the red boxes are ground truth.



U
1→

U
1

U
1→

U
2

U
1→

U
3

U
1→

U
4

U
1→

U
5

U
2→

U
1

U
2→

U
2

U
2→

U
4

U
2→

U
3

U
2→

U
5

U
3→

U
1

U
3→

U
2

U
3→

U
3

U
3→

U
4

U
3→

U
5

U
4→

U
1

U
4→

U
2

U
4→

U
3

U
4→

U
4

U
4→

U
5

U
5→

U
1

U
5→

U
2

U
5→

U
3

U
5→

U
4

U
5→

U
5

U
6→

U
1

U
6→

U
2

U
6→

U
3

U
6→

U
4

U
6→

U
5

U
7→

U
1

U
7→

U
2

U
7→

U
4

U
7→

U
3

U
7→

U
5

U
8→

U
1

U
8→

U
2

U
8→

U
3

U
8→

U
4

U
8→

U
5

U
1→

U
6

U
1→

U
7

U
1→

U
8

U
2→

U
6

U
2→

U
7

U
2→

U
8

U
3→

U
6

U
3→

U
7

U
3→

U
8

U
4→

U
6

U
4→

U
7

U
4→

U
8

U
5→

U
6

U
5→

U
7

U
5→

U
8

U
6→

U
6

U
6→

U
7

U
6→

U
8

U
7→

U
6

U
7→

U
7

U
7→

U
8

U
8→

U
6

U
8→

U
7

U
8→

U
8

Figure 6: An example of mappings between multiple unseen styles. The images in the red boxes are ground truth.



Input Normalized Residual Output Ground Truth

0 0.5 1
−0.05

0

0.05

0 0.5 1
−0.04

−0.02

0

0.02

0.04

0 0.5 1
−0.06

−0.04

−0.02

0

0.02
R
G
B
H
W

R G B

Figure 7: An example of the color transformation from style Y to style C. The normalized residual image corresponds to the
bottom color transformation curves predicted by the network.

Input Output Ground Truth

0 0.5 1

−0.05

0

0.05

0.1

0 0.5 1

−0.1

−0.05

0

0.05

0 0.5 1

−0.1

0

0.1 R
G
B
H
W

R G B

Figure 8: An example of the color transformation between two unseen styles.



R
aw

 O
ut

pu
t

M
an

ua
l F

in
e-

tu
ni

ng

Ground TruthInput Raw Output Manual Fine-tuning

0 0.5 1

−0.2

0

0.2

0 0.5 1

−0.2

0

0.2

0 0.5 1

−0.2

0

0.2 R
G
B
H
W

R G B

0 0.5 1

−0.2

0

0.2

0 0.5 1

−0.2

0

0.2

−0.2

−0.4

0 0.5 1

0

0.2
R
G
B
H
W

R G B

Figure 9: An example of manual fine-tuning from style O to style C.

Ground TruthInput Raw Output Manual Fine-tuning

0 0.5 1

−0.1

−0.05

0

0.05

0.1

0 0.5 1
−0.1

−0.05

0

0.05

0.1

0 0.5 1

−0.1

0

0.1
R
G
B
H
W

R G B

0 0.5 1

−0.1

0

0.1

0 0.5 1

−0.1

0

0.1

0 0.5 1

−0.2

0

0.2
R
G
B
H
W

R G B

R
aw

 O
ut

pu
t

M
an

ua
l F

in
e-

tu
ni

ng

Figure 10: An example of manual fine-tuning between two unseen styles.



References
[1] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo

Durand. Learning photographic global tonal adjustment with
a database of input/output image pairs. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
97–104. IEEE, 2011.

[2] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8789–8797, 2018.

[3] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 8188–8197, 2020.

[4] Frederick N Fritsch and Ralph E Carlson. Monotone piece-
wise cubic interpolation. SIAM Journal on Numerical Anal-
ysis, 17(2):238–246, 1980.

[5] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1712–1722, 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In International Confer-
ence on Computer Vision (ICCV), pages 1026–1034, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
Conference on Computer Vision (ECCV), pages 630–645.
Springer, 2016.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing (ICML), pages 448–456. PMLR, 2015.

[11] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Proxy anchor loss for deep metric learning. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3238–3247, 2020.

[12] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages
136–144, 2017.

[13] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Le-
ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-
ric learning using proxies. In International Conference on
Computer Vision (ICCV), pages 360–368, 2017.

[14] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In International Con-
ference on Machine Learning (ICML), pages 807–814, 2010.

[15] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong
Jin. Softtriple loss: Deep metric learning without triplet
sampling. In International Conference on Computer Vision
(ICCV), pages 6450–6458, 2019.

[16] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016.

[17] Andrew Zhai and Hao-Yu Wu. Classification is a strong
baseline for deep metric learning. British Machine Vision
Conference (BMVC), 2018.

[18] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup ini-
tialization: Residual learning without normalization. In In-
ternational Conference on Learning Representations (ICLR),
2018.


