
MonteFloor: Extending MCTS for

Reconstructing Accurate Large-Scale Floor Plans

–

Supplementary Material

Sinisa Stekovic1, Mahdi Rad1, Friedrich Fraundorfer1, Vincent Lepetit2,1

1Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
2Université Paris-Est, École des Ponts ParisTech, Paris, France

{sinisa.stekovic, rad, fraundorfer}@icg.tugraz.at, vincent.lepetit@enpc.fr

This document provides additional information about

our MonteFloor method. We also provide a video demon-

strating it in action.

1. MCTS Implementation

In this section, we provide more details about our im-

plementation of Monte Carlo Tree Search (MCTS) with our

refinement step.

Tree nodes. As explained in the main paper, the nodes

contain several attributes. Every node is associated with

some proposal Pi, but the same proposal Pi is associated

with one or more nodes along different sub-paths of the

tree. Every node N also keeps track of its “node score”

Q(N) and number of visits n(N) that will be used later to

guide the search towards the most promising directions. A

node can have multiple children nodes children(N) and has

a single parent node.

Initialization. Initially, the search tree contains only a

root node and is built online by expanding the tree in the

most promising direction at every iteration.

During the search, we follow the standard Select-

Expand-Simulate-Update strategy:

Selection step. At each iteration, and starting from the

root node, we traverse existing nodes at each level of the

tree by following the Upper Confidence Bound (UCB) cri-

terion: From current node Ncurr, we select its child node

N ∈ children(Ncurr) that maximizes the criterion

arg max
N∈children(Ncurr)

Q(N) + λUCB ·

√

log n(Ncurr)

n(N)
, (1)

where λUCB is a hyperparameter that balances exploitation

and the exploration during the search.

Expansion step. If during selection, there is a node with

a child node N ∈ children(Ncurr) that has not been created

yet, we do not follow the selection criterion, but instead, we

add N to the tree. We set Q(N) = −∞ and n(N) = 0 at

this stage.

Simulation step. Immediately after the expansion step,

we perform a simulation step and randomly create and tra-

verse the children nodes until we reach a leaf node of the

tree.

Refinement step. Whenever a leaf node is reached dur-

ing simulation, we run 1 iteration of the Adam optimizer [2]

on the selected proposals P to minimize L(P ) (Eq. (1)

of the main paper) and calculate the score S = −L(P ):
Running more iterations decreases the number of necessary

MCTS iterations, but still results in longer run-times. In-

stead, we allow the tree search to select already visited so-

lutions. This results in faster run-time and accurate solu-

tions, as we will run multiple refinement steps on the most

promising solutions, but few on the less likely ones.

Update step. Once we know the score S for a set of pro-

posals P after the refinement step, for every traversed node

N , we update the node score Q(N)← max(Q(N), S) and

increment n(N).
During experiments, for each scene we set λUCB = 1

initially, and linearly decay it such that the last MCTS iter-

ation uses λUCB = 0.01.

2. Generating Floor Plans for Training the

Metric Network

The metric network is trained on the Structured3D

dataset [3] with input density maps and floor plans of size

256×256. During training, we generate input floor plans di-

rectly from the ground truth annotations to simulate a large

variety of possible settings. More exactly, with probabil-

ity of 30%, we select the ground truth floor plan as input.

Otherwise, each individual room is added with probabil-

ity of 50%. A single room is randomly rotated with 50%



chance by either 90◦, 180◦, or 270◦, and randomly trans-

lated by [−50, 50] pixels with probability of 10%. With

1% probability, a vertex inside a room polygon is trans-

lated in range [−10, 10] pixels. Labels for individual rooms

are shuffled to make sure the network does not overfit to

some specific label ordering. Similarly to input floor plans,

we augment the dataset by rotating and translating the input

density map and the corresponding ground truth floor plan.

We match the generated room shapes with the ground truth

shapes, as in Section 4.1 of the main paper, and calculate

the Intersection-Over-Union (IOU) between the matches to

obtain the final ground truth score.

The network is then trained by minimizing the Root-

Mean-Square-Error (RMSE) between predicted and ground

truth scores. We use the Adam optimizer [2] with learning

rate set to 10−3.

3. Choice of Hyper-Parameters for the Objec-

tive Function

During refinement step, we set λang = 0.01, λ0 =
0.01, λglob = 0.2, λf = 0.1 and normalize p(α) to [0, 1].
We have found empirically that this set of hyper-parameters

balances the influence of the corresponding loss terms. We

have found that setting λglob = 0 and λf = 1 in the score

calculation step increases convergence speed.

For the test set from [1], our metric network is less stable

as it was not trained on this dataset. Hence, we have ob-

served that setting λang = 0.1, λ0 = 0.1, λglob = 0.2, λf =
0.05, during refinement step, improves performance. Dur-

ing the score calculation step, we still set λglob = 0 and

λf = 1.

4. Multiple Optimizers

As the number of room proposals increases, optimizer

has to deal with much larger number of learning parame-

ters. In turn, this leads to larger computation times during

optimization step. To overcome this issue, we employ mul-

tiple optimizers: For each leaf node in the tree, we create

an optimizer that optimizes the set of proposals along cor-

responding path in the tree. Such approach improves com-

putation times considerably.

5. Qualitative Results

Figures 1 and 2 show additional qualitative results on

the Structured3D dataset 1 and the test set from [1]. As

shown in Figure 3, from the floor plans reconstructed by our

MonteFloor method, we can directly reconstruct 3D floor

plans simply by assuming constant wall height. Our 3D

floor plans are consistent with underlying 3D scene.

6. Limitations and Future Work

We demonstrate some failure cases in Figure 4. Even

though our method achieves state-of-the-art results on ex-

isting datasets we do believe there is still a large potential

for improvements:

• The number of vertices of polygonal proposals is deter-

mined strictly by the polygonized outputs of the masks

from Mask R-CNN. It would be interesting to consider

possibility of dynamically adding, or removing, ver-

tices of polygonal proposals. Similarly, it would be in-

teresting to dynamically generate new rooms in places

where large discrepancies are detected.

• It is clear from initialization that some proposals are

unlikely to be part of the final layout. Using prior in-

formation about the quality of proposals to initialize

node scores in the tree could make our approach run

even faster.

• Density maps are a useful representation, but in prac-

tice, they can still be ambiguous in some cases. Hence,

considering additional information such as perspective

views, and camera trajectory, could be very helpful to

deal with such ambiguities.

References

[1] Jiacheng Chen, Chen Liu, Jiaye Wu, and Yasutaka Furukawa.

Floor-SP: Inverse CAD for Floorplans by Sequential Room-

Wise Shortest Path. In Conference on Computer Vision and

Pattern Recognition, 2019. 2, 4

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1, 2

[3] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,

and Zihan Zhou. Structured3D: A Large Photo-Realistic

Dataset for Structured 3D Modeling. In European Conference

on Computer Vision, 2020. 1, 3



Input Point Cloud Density Map Floor-SP Ours w/o Refin. MonteFloor (Ours) Ground Truth

Figure 1: Qualitative results on Structured3D [3]. In the first example, both Floor-SP and our MonteFloor retrieve good floor

plans. In the second example, Floor-SP misses some rooms and retrieves self-intersecting floor plans. In the third example,

the light blue room reconstructed by Floor-SP that is slightly more complex than reality. In the fourth example, both methods

perform well. In the fifth example, Floor-SP oversimplifies the yellow and dark blue rooms.



Input Point Cloud Density Map Floor-SP Ours w/o Refin. MonteFloor (Ours) Ground Truth

Figure 2: Qualitative results on the test set from [1]. In the first example, we believe that the floor plan retrieved by our

method is better than the manual annotation as the purple room appears to be an annotation error and the light blue room is

oversimplified. Similarly, in the second example, our reconstructions are much more consistent with the actual input. In the

third example, Floor-SP produces self-intersecting rooms but our reconstructed green room is slightly more complex than its

corresponding ground truth. In the fourth example, the little pink room on the bottom right of the ground truth is actually

an annotation error. In the fifth example, the light blue room in the ground truth are actually two rooms, as estimated by

both Floor-SP and our method. In addition, Floor-SP produces a small squared hole between the green, blue, red, and purple

rooms.



Figure 3: We can generate attractive 3D floor plans from our 2D reconstructions under a constant room height assump-

tion. The examples demonstrate that the floor plans reconstructed by our MonteFloor method are indeed consistent with

corresponding 3D scenes.



Density Map Floor-SP MonteFloor (Ours) Ground Truth

Figure 4: Failure Cases. First row, red arrow: Our reconstruction of the green room is incorrect as there are some ambiguities

in the density map for this region. In contrast, Floor-SP is more likely to produce Manhattan layouts in such situations.

Second row, red arrow: None of the generated polygonal proposals for the pink room are adequate to represent the actual

shape. Floor-SP performs graph-based search on pixel-locations that lie on the polygonal curve. As the final polygon is

generated after the search, they obtain better reconstruction in this example. Third row, red arrow: Similarly to Floor-SP, we

were not able to remove false positive proposal. This implies that the metric network could be further improved.


