
6. Appendix
6.1. Evaluation Protocol

Our work is about self-supervised pretraining of video
representations. For evaluation, we mostly perform transfer
learning experiments following the standard linear evalua-
tion protocol commonly used by recent self-supervised im-
age representation learning approaches [8, 42]. Our video
representation is first pretrained on unlabeled videos from a
large pretraining dataset.

We then transfer the self-supervised representations to
the target dataset, by training a linear classifier on top of the
frozen representations. This linear classifier is trained on la-
beled examples from the training split of the target dataset.
Accuracy on the test split of the target dataset is used to
measure the representation quality. We list the pretrain and
target datasets used to generate the results in our main sub-
mission in Table A1.

6.2. More Model Ablations

1. Number of transformer layers. We vary the number of
transformer layers (1,2,4,8) for our projection head, which
receives encoded time augmentations as additional input.
Performance on SSv1 linear evaluation can be found in Ta-
ble A2. We observe that the performance begins to slightly
saturate at four layers.

No. Layers Top-1 Acc. Top-5 Acc.

1 26.9 56.2
2 30.0 60.3
4 31.2 61.4
8 31.3 62.4

Table A2: Impact of number of layers in the transformer
projection head on Something-Something v1. Time shift
encoding is used for all runs. The performance begins to
gradually saturate at four layers. The transformer projection
head is only applied during pre-training, and is not used in
downstream tasks.

2. Number of Pretraining Epochs. We ablate the num-
ber of pretraining epochs when evaluated on SSv1, UCF101
and HMDB51. We observe in Table A3 that pretraining for
more epochs helps improve representation quality, as also
observed by [8], and it saturates at 500 epochs.

Epochs SSv1 UCF101 HMDB51

200 29.8 71.4 43.6
500 32.2 84.3 53.6
800 33.1 83.6 53.0

Table A3: Impact of number of training epochs on SSv1,
UCF101 and HMDB51, using linear eval on frozen features.

3. Results on SSv2. We follow the same setup as Table
2 and study the impact of crop and time encodings when
both the pretraining and target datasets are SSv2. Results
are shown in Table A4. We observe a similar trend as in
SSv1: encoding time outperforms the no encoding baseline,
and composing time and crop encodings further improves
performance.

Enc. Crop Enc. Time Top-1 Acc. Top-5 Acc.

7 7 40.0 72.4
X 7 40.1 72.4
7 X 42.3 74.5
X X 43.5 75.3

Table A4: Results on crop and time encodings on on
SSv2 under a linear eval protocol. Trend is consistent with
SSv1.

4. Types of Action Classification. In addition to results on
SS, we also show results on standard action classification
benchmarks UCF101 and HMDB51 under two settings - us-
ing all frames and using only the first frame in Table A5. We
only show results with time encoding - we find that unlike
SSv1 and SSv2, using the crop encoding hurts the perfor-
mance. This is interesting and we conjecture that the ben-
efit of augmentation encoding depends on the downstream
task at hand: for fine-grained tasks that require some level
of spatial reasoning (e.g. object localisation is needed to tell
picking up from putting down in SSv1.), awareness of spa-
tial augmentations is helpful; however for scene-level clas-
sification (e.g. UCF101 and HMDB51) it might be benefi-
cial to be invariant to those augmentations.

Table A5 shows a similar trend for encoding time as that
on SSv1, improving over the baseline. The relative im-
provement is bigger for first frame classification vs using all
frames, however for both cases, the relative improvement is
smaller than on SSv1. Finally, we also report results on the
Kinetics-400 dataset: Without encoding time shifts, the lin-
ear evaluation top-1 accuracy is 55.3%. With encoding, the
accuracy improves to 57.0%. The relative improvement is
similar to that on UCF-101 and HMDB-51, and smaller than
on Something-Something. These are consistent with pre-
vious observations [64] that temporal information is more
important for the Something-Something dataset.
5. Nearest neighbor retrieval. We also validate our
learned representations using the nearest neighbor retrieval
benchmark. We follow the standard evaluation proto-
col [18,32]: For each query video in the test set, we retrieve
its top k nearest neighbors in the training set. A correct re-
trieval is deemed when any of the nearest neighbors belongs
to the same category as the query video. We follow the lin-
ear evaluation procedure, and extract the visual representa-
tions from the visual encoders f(cot). For each video, we
uniformly sample two windows of 32 frames and average



Table No. Pretrain Data (Unlabeled) Target Data (Train) Target Data (Eval)

1,2,3,5 SSv1 train split SSv1 train split SSv1 val split
4,7 Kinetics-400 train split UCF/HMDB train splits UCF/HMDB val splits
6 SElse ‘Base’ train split SElse ‘Novel’ train split SElse ‘Novel’ val split

Table A1: Pretraining datasets for self-supervised representation learning with CATE, and target datasets for linear evaluation
for results reported in the main paper.

Input Encode time UCF HMDB

All frames 7 83.01 52.77
All frames X 84.32 53.57
First frame 7 73.67 38.69
First frame X 75.50 40.13

Table A5: Effect of time encoding on UCF101 [52] and
HMDB51 [31] We show results for both early action clas-
sification (first frame) and regular action classification (all
frames). We use frozen features: i.e. pretrained represen-
tations trained on Kinetics-400 are fixed and classified with
a linear layer. Encoding time helps in both settings, albeit
slightly more for early action classification.

their extracted representations. They are then L2 normal-
ized for retrieval. Following the standard protocol, we re-
port results on the first split of UCF-101 and HMDB-51. As
shown in Table A6 and A7, CATE significantly outperforms
previous approaches in the video retrieval benchmark.

Method top 1 top 5 top 10 top 20 top 50

OPN [32] 19.9 28.7 34.0 40.6 51.6
SpeedNet [5] 13.0 28.1 37.5 49.5 65.0

VCP [34] 19.9 33.7 42.0 50.5 64.4
Temporal SSL [25] 26.1 48.5 59.1 69.6 82.8

MemDPC† [18] 40.2 63.2 71.9 78.6 -
CATE 54.9 68.3 75.1 82.3 89.9

Table A6: Nearest neighbor retrieval evaluation on UCF-
101 split 1. †: with Flow

Method top 1 top 5 top 10 top 20 top 50

VCP [34] 6.7 21.3 32.7 49.2 73.3
MemDPC† [18] 15.6 37.6 52.0 65.3 -

CATE 33.0 56.8 69.4 82.1 92.8

Table A7: Nearest neighbor retrieval evaluation on HMDB-
51 split 1. †: with Flow

6. Per-class breakdown on SSv1. Table A8 shows the
classes that benefit the most and the least when crop aug-
mentation is encoded by CATE. As discussed in the main
paper, the trend is consistent with results for time encoding,
and indicates that crop encoding leads to representation that

better captures spatial information.
We further zoom into pairs of categories in Figure A1

with t-SNE plots. We extract representations from the test
split of SSv1, where the representational model from the
top row is learned by CATE with crop and time encoding,
while the bottom row is learned without augmentation en-
coding. We pick categories that are sensitive of temporal
ordering, such as moving away or approaching something
with camera, or pretending to put or show something be-
hind something. We observe that CATE in general leads
to representation that better separates these fine-grained ac-
tions, where no encoding leads to data points from different
categories (red and blue in the figure) mix with each other.

Label �AP

Lifting something up completely, then letting it drop down 13.5
Pulling something from right to left 13.2

Moving something and something away from each other 13.2
Dropping something in front of something 12.6

Moving something down 12.2
Pretending to sprinkle air onto something -7.0

Folding something -8.6
Pretending or failing to wipe something off of something -10.0

Moving away from something with your camera -11.6

Table A8: Classes that benefit the most and the least with
crop encoding on SSv1. We sort the classes by their differ-
ences on Average Precision.

6.3. Results on CLEVR and DSprites
Additionally, we further study the impact of crop encod-

ing by using two image benchmarks that explicitly require
spatial reasoning. The first dataset is CLEVR [28] with
70,000 training and 15,000 validation images. It is a di-
agnostic dataset which contains multiple objects of diverse
shape and location configurations. We follow the setup used
by [68] and evaluate on two tasks: Count which requires
counting the total number of objects, and Dist which re-
quires predicting the depth of the closest object to the cam-
era, where the depth is bucketed into 6 bins. Both tasks
are formulated as classification tasks. The second dataset is
DSprites [36] which contains a single object floating around
in an image, with various shape, scale, orientation and lo-
cation. We use the Location task which requires predicting
the (x, y) center location of the object. The x and y coordi-



Figure A1. t-SNE plots computed on the test split of SSv1 videos. The top row uses representations learned by CATE with time and
crop encoding, the bottom rows uses representations learned without any augmentation encodings. For each column, we zoom into two
categories which are colour-coded using red and blue. We observe that CATE in general leads to representations that better separate
fine-grained action categories which are sensitive to temporal information (e.g. moving away or approaching something with camera) Best
viewed in colour.

nates are bucketed into 16 bins each. We report the geomet-
ric mean of classification accuracy on the bucketed x and y
coordinates.

For both benchmarks, we train CATE using the same se-
tups as we did with videos, except that the visual encoder
is now a 2D ResNet-50, and the learning rate is reduced by
5x. We pretrain and evaluate on the datasets themselves.

Crop Enc. CLEVR-Count [28] CLEVR-Dist [28] DSprites [36]

65.3 64.3 28.1
X 68.8 66.9 38.8

Table A9: Ablation of crop encoding on downstream tasks
that require spatial reasoning, such as counting the number
of objects, or localising objects in bucketed x, y coordinates.

The linear evaluation performance is shown in Table A9.
We observe that encoding crop improves the transfer learn-
ing performance on all three tasks that require spatial rea-
soning, which further validates our conjecture.


