
Supplementary Material for
Rethinking Transformer-based Set Prediction for Object Detection

A. Preliminaries

A.1. Transformer and Detection Transformer

As this work aims to improve the DEtection TRans-
former (DETR) model [3], for completeness, we describe
its architecture in more details.

Encoder-decoder framework DETR can be formulated
in an encoder-decoder framework [5]. The encoder of
DETR takes the features processed by the CNN backbone
as inputs and generates the context representation, and
the non-autoregressive decoder of DETR takes the object
queries as inputs and generates the detection results condi-
tional on the context.

Multi-head attention Two types of multi-head attentions
are used in DETR: multi-head self-attention and multi-head
cross-attention. A general attention mechanism can be for-
mulated as the weighted sum of the value vectors V using
query vectors Q and key vectors K:

Attention(Q,K, V ) = softmax
(
QKT

√
dmodel

)
· V, (1)

where dmodel represents the dimension of hidden representa-
tions. For self-attention, Q, K, and V are hidden represen-
tations of the previous layer. For cross-attention,Q refers to
hidden representations of the previous layer, whereasK and
V are context vectors from the encoder. Multi-head variant
of the attention mechanism allows the model to jointly at-
tend to information from different representation subspaces,
and is defined as:

Multi-head(Q,K, V ) = Concat(head1, . . . , headH)WO,

headh = Attention((PQ +Q)WQ
h , (PK +K)WK

h , V WV
h ),

where WQ
h ,W

K
h ∈ Rdmodel×dk , WV

h ∈ Rdmodel×dv , and
WO

h ∈ RHdv×dmodel are projection matrices, H is the num-
ber of attention heads, dk and dv are the hidden sizes of
queries/keys and values per head, and PQ and PK are posi-
tional encoding.

Figure 1. A detailed illustration of the DETR architecture. Resid-
ual connection and layer normalization are omitted.

Feed-forward network The position-wise Feed-Forward
Network (FFN) is applied after multi-head attentions in
both encoder and decoder. It consists of a two-layer linear
transformation with ReLU activation:

FFN(x) = max(0, xW1 + b1)W2 + b2, (2)

where W1 ∈ Rdmodel×dFFN , W2 ∈ RdFFN×dmodel , b1 ∈ RdFFN ,
b2 ∈ Rdmodel , and dFFN represents the hidden size of FFN.

Stacking Multi-head attention and feed-forward network
are stacked alternately to form the encoder and the decoder,
with residual connections [9] and layer normalization [1].
Figure 1 shows a detailed illustration of the DETR architec-
ture.

A.2. Faster R-CNN

Faster R-CNN [17] is a two-stage object detection
model, developed based on previous work of R-CNN [7]
and Fast R-CNN [6]. With Region Proposal Networks

1



(RPN), Faster R-CNN significantly improves the accuracy
and efficiency of two-stage object detection.

Region Proposal Networks The first module of Faster
R-CNN is a deep fully convolutional network, named the
Region Proposal Network (RPN) that proposes Regions of
Interest (RoIs). RPN takes the feature maps of a image as
input, and outputs a set of rectangular object proposals with
their objectness scores. RPN contains a shared 3 × 3 con-
volutional layer and two sibling 1 × 1 convolutional lay-
ers for regression and classification respectively. At each
sliding-window location, RPN produces k proposals. The
proposals are parameterized relative to k reference boxes
called anchors. In Fast R-CNN, 3 scales and 3 aspect ratios
of anchors are used, so there are k = 9 anchors for each
sliding window. For each anchor, the regression head out-
puts 4 coordinate parameters {tx, ty, tw, th} that encode the
location and size of bounding boxes, and the classification
head outputs 2 scores {ppos, pneg} that estimate probability
of existence of object in the box.

Fast R-CNN The second part is the Fast R-CNN detector
that uses each proposal from RPN to refine the detection.
To reduce redundancy, non-maximum suppression (NMS)
is applied on the proposals, and only the top ranked propos-
als can be used by Fast R-CNN. Then, RoI Pooling or RoI
Align [8] is used to extract features from the backbone fea-
ture map at the given proposal regions, such that the input
to the Fast R-CNN detector has fixed spatial size for each
proposal. At this stage, Fast R-CNN outputs bounding box
regression parameters and classification scores to refine the
region proposals. Again, NMS is required to reduce dupli-
cation in the detection results.

A.3. FCOS

Fully Convolutional One-Stage Object Detection
(FCOS) [20] is a recent anchor-free, per-pixel detection
framework that has achieved state-of-the-art one-stage
object detection performance.

Per-Pixel Prediction In contrast to anchor-based object
detectors, FCOS formulates the task in a per-pixel predic-
tion fashion, that is, the target bounding boxes are regressed
at each location on the feature map, without referencing pre-
defined anchors. A location on the feature map is consid-
ered as a positive sample if its corresponding position on
the input image falls into any ground-truth box. If one lo-
cation falls into the overlap of multiple ground-truth boxes,
the smallest one is selected. Experiments show that with
multi-level prediction and FPN [13], this ambiguity does
not affect the overall performance.

Network Outputs In FCOS, there are two branches after
the feature maps from the backbone. The first branch has 4
convolutional layers and two sibling layers that outputs C
classification scores and a “center-ness” score. The center-
ness depicts the normalized distance from the location to the
center of the object that the location is responsible for. The
center-ness ranges in [0, 1] and is trained with binary cross
entropy loss. During test, the center-ness is multiplied to the
classification score, thus the possibly low-quality bounding
boxes that are far away from the center of objects will have
less weight in NMS. The second branch has 4 convolutional
layers and a bounding box regression layer that outputs the
distance from the location to the four sides of the box. The
prediction head is shared across multiple feature levels.

B. Detailed Experimental Settings

We provide more details about the default settings of our
implementation.

Backbone We use ResNet-50 and ResNet-101 [9] as the
backbone, and a Feature Pyramid Network [13] is built on
the {C3, C4, C5} feature maps from ResNet to produce fea-
ture pyramid {P3, P4, P5, P6, P7}. If specified with DCN,
we use Deformable ConvNets v2 [27] in the last three stages
of ResNet. The feature maps have 256 channels.

Data augmentation We follow the default setting of De-
tectron2 [22] for data augmentation. Specifically, we use
scale augmentation to resize the input images such that the
shortest side is in {640, 672, 704, 736, 768, 800}, and the
longest is no larger than 1333. Besides scale augmentation,
we also randomly flip training images horizontally.

Loss We use our proposed faster set prediction training
loss for classification, and a combination of L1 and Gener-
alized IoU [18] losses for regression. Focal loss [14] is used
for weighting positive and negative examples in classifica-
tion for both TSP-FCOS and TSP-RCNN. Unlike DETR
[3], we do not apply auxiliary losses after each encoder
layer. We find this end-to-end scheme improves the model
performance.

Optimization We use AdamW [15] to optimize the
Transformer component, and SGD with momentum 0.9 to
optimizer the other parts in our detector. For the 36-epoch
(3×) schedule, we train the detector for 2.7 × 105 itera-
tions with batch size 16. The learning rate is set to 10−4 for
AdamW, and 10−2 for SGD in the beginning, and both mul-
tiplied by 0.1 at 1.8× 105 and 2.4× 105 iterations. We also
use linear learning rate warm-up in the first 1000 iterations.
The weight decay is set to 10−4. We apply gradient clipping



Model Backbone AP AP50 AP75 APS APM APL

Faster RCNN [17] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Fitness NMS [21] ResNet-101 41.8 60.9 44.9 21.5 45.0 57.5
Libra RCNN [16] ResNet-101 41.1 62.1 44.7 23.4 43.7 52.5
Cascade RCNN [2] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
TridentNet [12] ResNet-101-DCN 46.8 67.6 51.5 28.0 51.2 60.5
TSD [19] ResNet-101 43.2 64.0 46.9 24.0 46.3 55.8
Dynamic RCNN [24] ResNet-101 44.7 63.6 49.1 26.0 47.4 57.2
Dynamic RCNN [24] ResNet-101-DCN 46.9 65.9 51.3 28.1 49.6 60.0

RetinaNet [14] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
FSAF [26] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3
FCOS [20] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6
MAL [10] ResNet-101 43.6 62.8 47.1 25.0 46.9 55.8
RepPoints [23] ResNet-101-DCN 45.0 66.1 49.0 26.6 48.6 57.5
ATSS [25] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6
ATSS [25] ResNet-101-DCN 46.3 64.7 50.4 27.7 49.8 58.4

TSP-FCOS ResNet-101 46.1 65.8 50.3 27.3 49.0 58.2
TSP-FCOS ResNet-101-DCN 46.8 66.4 51.0 27.6 49.5 59.0

Table 1. Compare TSP-FCOS with state-of-the-art models on COCO 2017 test set (single-model and single-scale results). Underlined and
bold numbers represent the best one-stage model with ResNet-101 and ResNet-101-DCN backbone, respectively.

Model AP APS APM APL FLOPs #Params

FCOS 41.0 26.2 44.6 52.2 177G 36.4M
FCOS-larger 41.5 26.0 45.2 52.3 199G 37.6M
TSP-FCOS 43.1 26.6 46.8 55.9 189G 51.5M

Faster RCNN 40.2 24.2 43.5 52.0 180G 41.7M
Faster RCNN-larger 40.9 24.4 44.1 54.1 200G 65.3M
TSP-RCNN 43.8 28.6 46.9 55.7 188G 63.6M

Table 2. Evaluation results on COCO 2017 validation set of mod-
els under various FLOPs. ResNet-50 is used as backbone.

for the Transformer part, with a maximal L2 gradient norm
of 0.1.

Longer training schedule We also use a 96-epoch (8×)
schedule in the paper. The 96-epoch (8×) schedule will re-
sume from 36-epoch (3×) schedule’s model checkpoint in
the 24th epoch (i.e., 1.8×105 iterations), and continue train-
ing for 72 epoch (i.e., 5.4×105 iterations). The learning rate
is multiplied by 0.1 at 4.8 × 105 and 6.4 × 105 iterations.
In the 8× schedule, we will further apply random crop aug-
mentation. We follow the augmentation strategy in DETR
[3], where a train image is cropped with probability 0.5 to
a random rectangular patch which is then resized again to
800-1333.

C. More Details of Encoder-only DETR

Our encoder-only DETR is also trained with the Hungar-
ian loss for set prediction, but the bounding box regression

Model AP AP50 AP75 APS APM APL

Deformable DETR 43.8 62.6 47.7 26.4 47.1 58.0
+ iterative refinement 45.4 64.7 49.0 26.8 48.3 61.7
++ two-stage∗ 46.2 65.2 50.0 28.8 49.2 61.7

TSP-RCNN 44.4 63.7 49.0 29.0 47.0 56.7
+ iterative refinement 45.4 63.1 49.6 29.5 48.5 58.7

Table 3. Evaluation results on COCO 2017 validation set of TSP-
RCNN and Deformable DETR with iterative refinement. All mod-
els are trained with 50 epochs and a batch size of 32. ∗ Please refer
to the original Deformable DETR paper for the definition of two-
stage Deformable DETR.

process is a bit different. In original DETR, bounding box
regression is reference-free, where DETR directly predicts
the normalized center coordinates (cx, cy) ∈ [0, 1]2, height
and width (w, h) ∈ [0, 1]2 of the box w.r.t. the input im-
age. In encoder-only DETR, as each prediction is based on
a feature point of Transformer encoder output, we will use
the feature point coordinates (xr, yr) as the reference point
of regression:

cx = σ(b1 + σ−1(xr)), cy = σ(b2 + σ−1(yr))

where {b1, b2} are from the output of regression prediction.

D. Comparison between TSP-RCNN and De-
formable DETR with Iterative Refinement

Inspired by Deformable DETR [28], we conduct experi-
ments of TSP-RCNN which also iteratively refines the pre-



diction boxes in a cascade style [2]. Here we implement a
simple two-cascade scheme, whether the dimension of fully
connected detection head and Transformer feed-forward
network are reduced from 12544-1024-1024 and 512-2048-
512 to 12544-512 and 512-1024-512, respectively, to main-
tain a similar number of parameters and FLOPs as the orig-
inal model. To make a fair comparison, we also follow
the experimental setting of Deformable DETR where a 50-
epoch training schedule with batch size 32 is used.

Table 3 shows the results of TSP-RCNN and Deformable
DETR with iterative refinement. From the results, we can
see that without iterative refinement, TSP-RCNN outper-
forms Deformable DETR with the same training setting.
The iterative refinement process can improve the perfor-
mance of TSP-RCNN by 1 AP point. We can also find
that both with iterative refinement, TSP-RCNN slightly un-
derperforms Deformable DETR. We believe this is because
Deformable DETR utilizes D = 6 decoder refinement it-
erations, while we only conduct experiments with two re-
finement iterations. How to efficiently incorporate multiple
refinement iterations into the TSP-RCNN model is left as
future work.

E. Comparison under similar FLOPs

Compared to original FCOS and Faster RCNN, our TSP-
FCOS and TSP-RCNN use an additional Transformer en-
coder module. Therefore, it is natural to ask whether the
improvements come from more computation and parame-
ters. Table 2 answers this question by applying stronger
baseline models to the baseline models. For Faster RCNN,
we first apply two unshared convolutional layers to P3-P7

as a stronger RPN, and then change the original 12544-
1024-1024 fully-connected (fc) detection head to 12544-
2048-2048-2048. This results in a Faster RCNN model with
roughly 200 GFLOPs and 65.3M parameters. For FCOS,
we evaluate a FCOS model with roughly 199 GFLOPs,
where we add one more convolutional layer in both classifi-
cation and regression heads. From Table 2, we can see that
while adding more computation and parameters to baselines
can slightly improve their performance, such improvements
are not as significant as our TSP mechanism.

F. Compare TSP-FCOS with State-of-the-Arts

For completeness, we also compare our proposed TSP-
FCOS model with other state-of-the-art detection models
[17, 21, 2, 19, 14, 26, 20, 4, 11, 23, 25] that also use
ResNet-101 backbone or its deformable convolution net-
work (DCN) [27] variant in Table 1. A 8× schedule and ran-
dom crop augmentation is used. The performance metrics
are evaluated on COCO 2017 test set using single-model
and single-scale detection results. We can see that TSP-
FCOS achieves state-of-the-art performance among one-

Table 4. Ablation result w.r.t. the number of proposals for R-50
TSP-RCNN and the number of feature positions for R-50 TSP-
FCOS on the validation set.

Num. of Proposals 100 300 500 700

TSP-RCNN 40.3 43.3 43.7 43.8
TSP-FCOS 40.0 42.5 42.9 43.1

stage detectors in terms of the AP score. But comparing
Table 4 in the main paper and Table 1, we can also find
that TSP-FCOS slightly under-performs our proposed TSP-
RCNN model.

G. Ablation Study for the Number of Feature
Positions & Proposals

For TSP-FCOS, we select top 700 scored feature posi-
tions from FoI classifier as the input of Transformer en-
coder during FoI selection, while for for TSP-RCNN, we
select top 700 scored proposals from RPN during RoI se-
lection. However, the number of feature Positions and pro-
posals used in our experiments are not necessarily optimal.
We present an ablation study with respect to this point in
Table 4. Our results show that our models still preserve a
high prediction accuracy when only using half of feature
positions.

H. Qualitative Analysis

We provide a qualitative analysis of TSP-RCNN on sev-
eral images in Figure 2. We pick one specific Transformer
attention head for analysis. All boxes are RoI boxes pre-
dicted by RPN, where the dashed boxes are the top-5 at-
tended boxes for the corresponding solid boxes in the same
color. We can see that the Transformer encoder can effec-
tively capture the RoI boxes that refer to the same instances,
and hence can help to reduce the prediction redundancy.
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