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1. Theoretical Motivation of RTFM
Theorem 1.1 (Expected Separability Between Abnor-
mal and Normal Videos). Assuming that E[‖x+‖2] ≥
E[‖x−‖2], where X+ has µ abnormal samples and (T −µ)
normal samples, where µ ∈ [1, T ], and X− has T normal
samples. Let Dθ,k(.) be the random variable from which
the separability scores dθ,k(.) of Eq.3 in the main paper are
drawn [2].

1. If 0 < k < µ, then

0 ≤ E[Dθ,k(X
+,X−)] ≤ E[Dθ,k+1(X

+,X−)].

2. For a finite µ, then

lim
k→∞

E[Dθ,k(X
+,X−)] = 0.

Proof.

E[Dθ,k(X
+,X−)] = E[gθ,k(X+)]− E[gθ,k(X−)]

= p+k (X
+)E[‖x+‖2] + p−k (X

+)E[‖x−‖2]− E[‖x−‖2]
(1)

1. Trivial given that E[‖x+‖2] ≥ E[‖x−‖2] and that
p+k+1(X

+) > p+k (X
+) for 0 < k < µ

2. Trivial given that as µ is finite, limk→∞ p+k (X
+) = 0.

Intuition of feature magnitude: Assuming the ex-
pected magnitude of abnormal samples is larger than of nor-
mal samples, we can derive Thm. 3.1 that proves that the ex-
pected feature magnitude-based separability score between
normal and abnormal videos grows for 0 < k < µ and re-
duces to zero for k →∞. Hence, to use Thm. 3.1, we need
to enforce larger magnitude for abnormal features using our
proposed RTFM. The similarity between the theoretical and
empirical curves in Fig.2(left) is evidence of the soundness
of Thm. 3.1.

Figure 1. Our proposed MTN consists of two modules. The mod-
ule on the left uses the pyramid dilated convolutions to capture
the local consecutive snippets dependency over different temporal
scales. The module on the right relies on a self-attention network
to compute the global temporal correlations. The features from the
two modules are concatenated to produce the MTN output.

2. Multi-scale Temporal Feature Learning

Our proposed multi-scale temporal network (MTN) cap-
tures the multi-resolution local temporal dependencies and
the global temporal dependencies between video snippets,
as displayed in Fig. 1.

3. Computational Efficiency

We investigate if our system can run in real time. Dur-
ing inference, our method processes a 16-frame clip in 0.76
seconds on a Nvidia 2080Ti–this time includes the I3D ex-
traction time. This indicates that our system can achieve



good real-time detection in real-world applications.

4. Temporal Dependency
Temporal Dependency has been explored in [1, 3–5, 7, 8,

10]. In anomaly detection, traditional methods [1, 8] con-
vert consecutive frames into handcrafted motion trajecto-
ries to capture the local consistency between neighbouring
frames. Diverse temporal dependency modelling methods
have been used in deep anomaly detection approaches, such
as stacked RNN [5], temporal consistency in future frame
prediction [4], and convolution LSTM [3]. However, these
methods capture short-range fixed-order temporal correla-
tions only with single temporal scale, ignoring the long-
range dependency from all possible temporal locations and
the events with varying temporal length. GCN-based meth-
ods are explored in [7, 10] to capture the long-range de-
pendency from snippets features, but they are inefficient
and hard to train. By contrast, our proposed module com-
bines PDC [9] and TSA [6] on the temporal dimension to
seamlessly and efficiently incorporate both the long and
short-range temporal dependencies into our temporal fea-
ture ranking loss.
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Figure 2. AUC w.r.t. top-k (Left) and the margin m (Right).

5. Ablations for k and m

We show the AUC results as a function of top-k and
margin m values on ShanghaiTech in Fig.2. Consistent
to our theoretical analysis, the performance of our model
peaks at a sufficiently large k, flattens at around k ≈ µ and
then drops with increasing k (Fig.2(left)). It is also robust
to a large range of m ∈ [50, 1200] with a stable AUC in
[93%, 96%] (Fig.2(right)).
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