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Overview

We provide further illustrations of the loss function
in Sec. S.1. We discuss a number of training details
in Sec. S.2. Next, we provide some implementation de-
tails in Sec. S.3. In Sec. S.4, we describe the capture of
our data. Sec. S.5 contains details on how we visualize the
additional output modalities of our method and some more
results. We show an additional result of our ablation study
in Sec. S.6. We provide more details on the experimen-
tal settings of our comparisons and some additional results
in Sec. S.7. Then in Sec. S.8, we present the extensions to
multi-view data and view-dependent effects mentioned in
the main paper. Sec. S.9 contains the scene editing tasks
mentioned in the main paper. Sec. S.10 contains a limi-
tation example of our method. Finally, Sec. S.11 contains
some preliminary qualitative comparisons to a concurrent,
non-peer-reviewed work.

S.1. Loss Illustration

Fig. S.1 illustrates L giyergence in 2D.

(©) Laivergence > 0

(a) Canonical Volume  (b) Lgivergence = 0

Figure S.1. L givergence €ncourages the offsets field to (b) preserve
local volume rather than (c) losing it while deforming.

S.2. Training Details

While the network weights are optimized as usual, the
latent codes 1; are auto-decoded, i.e., they are treated as
free variables that are directly optimized for, similar to net-
work weights, instead of being regressed. This is based on
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the auto-decoding framework used in DeepSDF and earlier
works [10, 6].

We initialize {1;}; to zero vectors. For implementing the
radiance field, we use the same architecture as in NeRF [5].
The ray bending network is a 5-layer MLP with 64 hidden
dimensions and ReLU activations, the last layer of which is
initialized with all weights set to zero. The rigidity network
is a 3-layer MLP with 32 hidden dimensions and ReLU ac-
tivations, with the last layer initialized to zeros. The output
of the last layer of the rigidity network is passed though a
tanh activation function and then shifted and rescaled to lie
in [0, 1]. We train usually for 200k iterations with a batch of
1k randomly sampled rays. At training and at test time, we
use 64 coarse and 64 fine samples per ray in most cases. We
use ADAM [2] and exponentially decay the learning rate to
10% from the initial 5 - 10~* over 250k iterations. For dark
scenes, we found it necessary to introduce a warm-up phase
that linearly increases the learning rate starting from 2—10th of
its original value over 1000 iterations. The latent codes are
of the dimension 32. We train between six and seven hours
on a single Quadro RTX 8000.

Since we consider a variety of types of non-rigid ob-
jects/scenes and deformations, we find it necessary to use
scene-specific weights for each loss term. We have found
the following ranges to be sufficient for a wide range of sce-
narios: wiigigiry lies in [0.01,0.001] and typically is 0.003,
Woffsets lies in [60, 600] and typically is 600, and Waivergence
lies in [1,30] and typically is 3 or 10. In our experience,
NR-NeRF is fairly insensitive to worsers- Rather rigid ob-
jects benefit from higher wgivergence» While fairly non-rigid
objects need lower wgivergence. Finally, we increase wiigidgity
whenever we find the background to be unstable. We start
the training with each weight set to llﬁth of its value, and
then exponentially increase it until it reaches its full value
at the end of training.



S.3. Implementation Details

Our code is based on a faithful PyTorch [7] port [11]
of the official Tensorflow NeRF code [5]. We use the of-
ficial FFJORD implementation [!] to estimate Eq. 5 from
the main paper. If the camera extrinsics and intrinsics
are not given, we estimate them using the Structure-from-
Motion (SfM) implementation of COLMAP [&, 9]. We find
COLMAP to be quite robust to non-rigid ‘outliers’. As
we are interested in estimating smooth deformations, we
only apply positional encoding to the input of the canonical
NeRF volume, not to the input of the ray bending network.
We will make our source code available.

S.4. Data

We show results on a variety of scenes recorded with
three different cameras: the Kinect Azure, a Blackmagic,
and a phone camera. Since the RGB camera of the Kinect
Azure exhibits strong radial distortions along the image bor-
der, we use the manufacturer-provided intrinsics and dis-
tortion parameters to undistort the recorded RGB images
beforehand. We extract frames at 5 fps from the record-
ings, such that scenes usually consist of 80 to 300 images,
at resolutions of 480 x 270 (Blackmagic, and Sony XZ2) or
512 x 384 (Kinect Azure).

S.5. Output Modalities
S.5.1. Visualizations

Rigidity Scores In order to visualize the estimated rigid-
ity, we need to determine the rigidity of the ray associated
with a pixel. We choose to define the rigidity of such a
ray as the rigidity of the point j closest to an accumulated
weight Zi;(l) ay of 0.5, i.e., closest to the median. In prac-
tice, this usually gives us the rigidity at the first visible sur-
face along the ray.

Correspondences To visualize correspondences, we treat
the canonical volume as an RGB cube, i.e., we treat the xyz
coordinate in canonical space as an RGB color. Since this
would result in very smooth colors, we split the canonical
volume into a voxel grid of 100> RGB cubes beforehand.
We pick the ray point that determines the pixel color similar
to the rigidity visualization.

S.5.2. More Results

See Fig. S.2 for more results of the output modalities of
NR-NeRF.

Canonical Volume Since the canonical volume is not su-
pervised directly, it is conceivable that it could have baked-
in deformations. The last row of Fig. S.2 contains render-
ings of the canonical volume without any ray bending ap-

plied. The canonical volume is a plausible state of the scene
and does not show baked-in deformations. We thus find it
to be sufficient to bias the optimization towards a desirable
canonical volume by initializing the ray bending network to
an identity map and by our regularization losses.

S.6. Ablation Study

Fig. S.3 contains an additional ablation study result that
demonstrates the importance of the divergence regulariza-
tion for foreground stability.

S.7. Comparisons

In this section, we provide more details on the experi-
mental settings of the comparisons.

S.7.1. Prior Work and Baseline

We start with the trivial baseline of rigid NeRF [5],
which cannot handle dynamic scenes. We consider two
variants: view-dependent rigid NeRF, as in the original
method [5], and view-independent rigid NeRF, where we
remove the view-direction conditioning.

We next introduce naive NR-NeRF, which adds naive
support for dynamic scenes to rigid NeRF: We condition
the neural radiance fields volume on the latent code. Thus,
for latent code 1;, we have (c, 0) = v(x,1;). This allows the
neural radiance fields volume to output time-varying color
and occupancy. Unlike NR-NeRF’s ray bending, naive
NR-NeRF does not have an explicit, separate deformation
model. Instead, the volume needs to account for appear-
ance, geometry and deformation at once. Note that for test
images i, we do backpropagate gradients into the corre-
sponding latent code 1;.

Finally, we compare to Neural Volumes [4], for which
we use the official code release. We use the standard set-
tings as a starting point, but set the number of training iter-
ations to 100k, which leads to a training time of about two
days on an RTX8000 GPU. Neural Volumes uses an image
encoder to regress a latent code that conditions the geom-
etry, appearance and deformation regression on the current
time step. Since this design assumes a multi-view setup, we
need to adapt it to our monocular setting. Instead of picking
three fixed camera views that are always input into the en-
coder, we input the single image of the current time step. In
particular, at test time, we input the test image. Since we do
not have access to a background image, we set the estimated
background image to an all-black image. We furthermore
consider two variations: (1) following the original Neural
Volumes method, the geometry and appearance template is
conditioned on the latent code (NV), and (2) the geometry
and appearance template is independent of the latent code
(modified NV). In the latter case, the latent code only con-
ditions the warp field, which is similar to our method.
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Figure S.2. NR-NeRF can render a deformed state captured at a certain time step into a novel view. We visualize here this novel-view
rendering and additional output modalities as seen from the novel view, namely rigidity scores, correspondences, and the canonical volume.
The canonical volume is a plausible state of the scene and does not show baked-in deformations. We refer to the supplemental video for

video results.

S.7.2. Training/Test Split

For quantitative evaluation, we require a test set. In the
comparison section, we split the images into training and
test images by partitioning the temporally-ordered images

into consecutive blocks, each of length 16. The first twelve
images of each block are used as training data, while the
remaining four are used for testing. In our setting, test im-
ages still require corresponding latent codes to represent the



Ours

Without Lgivergence ~ No regularization

Figure S.3. Ablation Study. We render the input scene into a novel
view to determine the stability of the non-rigid objects. We show
the results of removing the divergence loss, all three regularization
losses, and none of the losses.

deformations. Therefore, we treat test images like training
images except that we do not backpropagate into the canon-
ical volume or the ray bending network. However, we do
use gradients from test images to optimize the correspond-
ing latent codes. (Note that test images solely influence test
latent codes, as is typical for auto-decoding [6]. ') All other
results shown in this paper, outside of the comparisons, treat
all images as training images since we train scene-specific
networks. Furthermore, qualitative baseline results in the
supplemental video show both training and test time steps.

S.7.3. Additional Results

See Fig. S.4 for more qualitative results and Fig. S.7
for quantitative results on background stability under novel
views.

S.8. Extensions

As mentioned in Sec. 4 from the main paper, we can ex-
tend our approach easily to work with multi-view data and
view-dependent effects.

S.8.1. Multi-View Data

Our approach naturally handles multi-view data. Al-
though we mainly work with monocular data, we can use
multi-view data to investigate the upper quality bound of
our approach under ideal real-world conditions.

Method Instead of each image having its own time step
and hence latent code, images taken at the same time step
share the same latent code. This ensures that the canonical
volume deforms consistently within each time step.

Data and Settings We use a multi-view dataset that has
16 camera pairs evenly distributed around the scene, which
sufficiently constrains the optimization such that we find the

IThe only tweak we add is that we align the optimization landscapes of
the training and test latent codes by optimizing the test latent codes jointly
with the training latent codes during training. This does not lead to any
information leakage from the test images to any component except for the
test latent codes.

training to not need any regularization losses. We train at
the original resolution of 5120 x 3840 for 2 million training
iterations with 4096 rays per batch and 256 coarse and 128
fine samples. These highest-quality settings lead to a train-
ing time of 11 days on 4 RTX8000 GPUs, and a rendering
time of about 10 minutes per frame on the same hardware.

Results See Fig. S.5 and the supplemental video for re-
sults on five consecutive time steps.

S.8.2. View Dependence

We can optionally add view-dependent effects, like spec-
ularities, into our model.

Method Determining the view direction or ray direction
is not as trivial as for the straight rays. Instead, we need to
calculate the direction in which the bent ray passes through
a point in the canonical volume. We consider two options
of doing so: exact and slower, or approximate and faster.

Exact: We obtain the direction of the bent ray r at a point
r(j) via the chain rule as V,;r(j) = g;—g;; . ag—(jj) =J-
d, where J is the 3 x 3 Jacobian and d is the direction of
the straight ray. We compute .J via three backward passes
(one for each output dimension), which is computationally
expensive.

Approximate: To reduce computation, we can approxi-
mate the direction at the ray sample via finite differences as
the normalized difference vector between the current point
r(j) and the previous point ¥(j — 1) along the bent ray
(which is closer to the camera).

Results On multi-view data, conditioning on the view-
ing direction reduces the presence of subtle, smoke-like ar-
tifacts, which the canonical volume typically employs to
model view-dependent effects without view conditioning.
This is especially visible for the specularities on the face
and the handle of the kettlebell. Without view-dependent
effects, the reconstructed face still appears to exhibit spec-
ularities, but these are incorrectly modeled via smoke-like
artifacts in the surrounding air. See Fig. S.5 and the supple-
mental video for results.

For quantitative results on monocular sequences, see
Tab. S.8.2. However, as Fig. S.6 shows, we find our for-
mulation to lead to artifacts in some cases. We hypoth-
esize that the combination of both significant motion and
novel views significantly different from input views is too
underconstrained for view-dependent effects. For example,
non-rigid NeRF might incorrectly overfit to subtle correla-
tions between deformation and camera position at training
time. However, we want to emphasize that better formu-
lations and regularization in future work may make view-
dependent effects work in these challenging scenarios.



Naive NR-NeRF  Rigid NeRF
(view-dep.)

Rigid NeRF  Neural Volumes Neural Volumes
(not view-dep.) ‘ (modified)

Figure S.4. We show one time step each from each sequence and compare input reconstruction quality (first row) and novel view synthesis

quality (second row).

Ours | Ours Ours | Naive | Rigid Rigid NV NV

(appx.) | (exact) (cond.) | (no cond.) (mod.)
PSNR | 24.70 | 25.15 | 25.07 | 25.83 | 22.24 21.88 14.13 | 14.10
SSIM | 0.758 | 0.766 | 0.765 | 0.738 | 0.662 0.659 0.259 | 0.263
LPIPS | 0.197 | 0.191 | 0.190 | 0.226 | 0.309 0.313 0.580 | 0.583

Table S.1. Quantitative Results Averaged Across Scenes. We eval-
uate our method (1) without view conditioning, (2) with approx-
imate view conditioning, and (3) with exact view conditioning,
naive NR-NeREF, rigid NeRF [5] (1) with view conditioning and
(2) without view conditioning, and Neural Volumes [4] (1) with-
out and (2) with modifications. For PSNR and SSIM [13], higher
is better. For LPIPS [12], lower is better. As in Table 1 in the main
document, we use 18 scenes here, with an average length of 146
frames and a minimum of 41 and a maximum of 453 frames.

S.9. Simple Scene Editing

We can manipulate the learned model in further simple
ways: foreground removal, temporal super-sampling, defor-
mation exaggeration or dampening, and forced background
stabilization. Having discussed only foreground removal in
the main paper due to space constraints, we here present the
other editing tasks.

S.9.1. Time Interpolation

We can linearly interpolate between consecutive time
steps to enable temporal super-resolution since NR-NeRF

optimizes a latent code 1; for every time step ¢. We refer to
the supplemental video for results.

S.9.2. Deformation Exaggeration/Dampening

We can manipulate the deformation even further. Specif-
ically, We can exaggerate or dampen deformations relative
to the canonical model by scaling all offsets with a constant
m € R: (c,0) = v(x + mb(x,];)). Fig. S.8 contains ex-
amples.

S.9.3. Forced Background Stabilization

Since we do not require any pre-computed foreground-
background segmentation, NR-NeRF has to assign rigidity
scores without supervision. Occasionally, this insufficiently
constrains the background and leads to small motion. We
can fix this in some cases by enforcing a stable background
at test time: we set the regressed score to O if it is below
some threshold r,,;,. If the rigid background has sufficiently
small scores assigned to it relative to the non-rigid part of
the scene, this forces the background to remain static for all
time steps and views. For results, we refer to the supple-
mental video.
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Figure S.5. We explore the upper quality bound of our proposed method using a highly controlled multi-view setting. We can extend our
method such that it handles view-dependent effects. Results on the left are without view dependence, while those on the right are with view
dependence. We show a full rendering by NR-NeRF (first row), zoom-ins thereof (second row), and input images from the two closest
input cameras.



no (default) approximate exact

Figure S.6. While NR-NeRF extended with view-dependent ef-
fects (approximate or exact) gives similar results to the default
NR-NeRF for many monocular scenes, we sometimes observe ar-
tifacts for difficult novel views.

s (approx. view)
s (exact view)
NR-NeRF
Neural Volumes.
mod. Neural Volumes.
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Figure S.7. Background Stability. We quantify the difference in
background stability between our method, its variants with view
dependence, naive NR-NeRF, and Neural Volumes. To that end,
we render all test time steps of the input sequence into a fixed
novel view and compute the standard deviation of each pixel’s
color across time to measure color changes and hence background
stability. a) We show cumulative plots across all pixels, where NR-
NeRF and its variants (left-most curves) have the most stable back-
ground. b) We then show how those instabilities are distributed in
the scene. The results of NR-NeRF and its variants show the least
instability in the background.

S.10. Limitations

We do not account for appearance changes that are due
to deformation or lighting changes. For example, tempo-
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Figure S.8. We exaggerate or dampen the motion relative to the
canonical model, and render the result into a novel view.

Figure S.9. (Left) the groundtruth input image and (right) a ren-
dering without non-rigid foreground.

Figure S.10. The input (left) is reconstructed by NR-NeRF (mid-
dle). The bottom of the image exhibits local shadowing absent at
other time steps, which leads to a high reconstruction error (right).

rally changing shadowing in the input images is an issue, as
Fig. S.10 demonstrates.

Foreground removal can fail if a part of the foreground
is entirely static (e.g., the foot in Fig. S.9).

S.11. Additional Comparisons

We show some preliminary qualitative comparisons to
the concurrent, non-peer-reviewed work Neural Scene Flow
Fields [3] in Fig. S.11.



NSFF [3] Naive NR-NeRF  Rigid (no view dep.) Rigid (view dep.

Figure S.11. Under challenging novel view scenarios, our method benefits from the geometry and appearance information that the canonical
volume has accumulated from all time steps, which allows NR-NeRF to output sharp results. Both the concurrent, non-peer-reviewed
Neural Scene Flow Fields [3] and naive NR-NeRF however entangle deformation with geometry and appearance by conditioning the
’canonical’ volume on a time-dependent deformation latent code. This makes sharing information across time more difficult, leading
to blurrier results in challenging novel view scenarios compared to NR-NeRF’s results. Finally, rigid NeRF shows a blurry mix of the
deformations observed over the entire input sequence, which highlights the need to account for deformations in the scene.
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