
A. Appendix
In the following we elaborate a number of technical de-

tails that had to be omitted from the main paper for lack of
space.

A.1. Background on Tensor Decompositions

Low-rank tensor decompositions originated in chemo-
metrics in the 1960ies [47], and have since the 1990ies at-
tracted renewed interest in linear algebra and signal process-
ing [29]. Contrary to matrices, there is no single, obvious
and generally valid definition of a tensor’s rank. Multiple
useful definitions of tensor rank have been proposed, each
of which gives rise to a different decomposition. One of the
earliest was the canonical decomposition [22, 20, 10], with
the key concept of expressing a tensor as the sum of a finite
number of rank-one (separable) tensors. The decomposition
is memory-efficient, but computing it may be numerically
unstable; and it lacks a mechanism to control the trade-off
between low rank and higher approximation error [6, 38].
The Tucker decomposition [46] factors a D-dimensional
tensor into a smaller D-dimensional core tensor and D fac-
tor matrices. In contrast to canonical decomposition, in the
Tucker model one can find the lowest possible rank for a
given (approximation) error budget by truncation. On the
downside, it is suitable only for low-dimensional tensors
(typically, D  4), as the number of parameters scales ex-
ponentially with the dimensionality D.

The more recent TT format [39] combines important ad-
vantages of the CP and Tucker models: like the former, its
storage cost grows sub-exponentially with the dimension D,
while it is numerically stable like the latter. We note that the
recent tensor chain (TC) [12] is another related format that
is more symmetric than TT and also has sub-exponential
storage cost; however, the difficulty of rounding TC ten-
sors makes them inadequate for the feature projection step
required in our model to overcome the ambiguity of the de-
composition.

A.2. Algorithm Details for Cross-Approximation

We use tensor train cross-approximation [39, 43] to
learn an approximate TT decomposition of the (D + 1)-
dimensional latent encoding E. We do this by collecting
sets of samples (tensor elements) iteratively, one dimension
at a time, in a sweep-like fashion: we traverse dimensions 1
through D, then D+1 through 2, and iterate. At each sweep
k, sets of left indices L

k
d and right indices R

k
d are kept for

every dimension d, in such a way that the set of selected
fibers E[Lk

d, :, Rk
d] is a tensor of shape rd�1 ⇥ Id ⇥ rd. By

organizing those fibers as row vectors, we obtain a matrix
Ed of shape (rd�1 ·Id)⇥rd. We then run maxvol [15] on Ed

to select an rd ⇥rd submatrix Ẽd containing rd rows of Ed,
such that |det(Ẽd)| is as large as possible. The newly se-

lected row indices become L
k
d+1 and are subsequently used

to acquire the required samples for the next dimension d+1.
Once a full index selection sweep has concluded, we ap-

ply the cross interpolation formula: for each dimension d,
we compute EdẼ

�1
d and reshape the result into a tensor of

shape rd�1 ⇥Id ⇥rd that becomes the d-th TT core Qd. We
cast the matrix inversion product as a quadratic optimiza-
tion problem and find a differentiable solution of it via the
package cvxpylayers [1].

Forward propagation through C-PIC has complexity
O
�
FsDnr

2 + Dnr
3
�
, where s is the receptive field around

a sample and Fs is the cost of a forward pass with a ndim-
channel tensor of size s

3
⇥ndim. We do not back-propagate

through the index selection step, so the complexity of back-
prop for the sampled patches is O(BsDnr

2), with Bs the
cost of the backward pass for one patch.

A.3. Feature Projection Algorithm
Conceptually, our projection step is analogous to the task

of computing the principal component analysis (PCA) from
a given low-rank matrix factorisation M = UV T . To ac-
complish this without explicitly multiplying U with V T ,
one can:

1. Compute the QR factorisation of V , i.e., QR = V

2. Set Û := URT
, V̂ := Q

3. Find the principal components of Û , which are its r

leading left singular vectors.

We perform this algorithm in the compressed TT domain,
consisting of the following three steps:

i. stack the K TT tensors from one training batch along
a new, leading dimension to form a new TT tensor of
dimension D + 2 (with dimension I0 the number of
samples in the batch);

ii. orthogonalise the stack w.r.t. that newly formed core
(which can be treated as a matrix, since its shape is
1 ⇥ K ⇥ j1);

iii. find the r leading PCA components of that matrix.

For step ii, instead of a single QR factorisation, our version
requires a sequence of QR factorisations and core rotations,
see Fig. 6 and [23].

A.4. Network Architecture Details
Table 3 shows the exact sequence of layers in our (con-

volutional) encoder, as well as in our (fully connected) re-
gression heads after the TT bottleneck.

The 3D input scans are mapped to a latent encoding with
a convolutional encoder with four layers, ReLU activations

· · ·Z0 Z1 Z2 ZD+1

i0 i1 i2 iD+1

j0 j0 j1 j1 jD jD

Figure 6: TT decomposition with left-orthogonalised TT-
cores Qd, d = 1, . . . , D + 1, such that reshaping any Qd

into rd�1 ⇥(Idrd) yields an orthonormal matrix [23]. Here,
Q0 plays the role of Û from step 2, while the tensor re-
constructed from the remaining cores (and reshaped into an
r0 ⇥ (I1 . . . ID+1) matrix) plays the role of V̂ T .

between layers, and a sigmoid after the last layer. All ker-
nels are of size 3⇥3, resulting in a receptive field of 93 vox-
els since no padding is used.

The regression heads are multi-layer perceptrons, with
ReLU activations and batch normalisation (for OSIC dataset
we found turning off batch normalization leads to better re-
sults and faster convergence). For BraTS survival time we
employ standard regression, whereas for OSIC Pulmonary
Fibrosis progression we use quantile regression to predict
uncertainty, moreover we first transform the visual informa-
tion with two layers without batchnorm (left side of center
column in Table 3), then fuse it with the week number and
decode into the final prediction with three more layers (right
side of column).

Table 3: Network architectures used in our experiments.

Encoder 3D Quantile regressor Regressor

conv(33
, 5) dense(500) dense(100)

ReLU ReLU BN
conv(33

, 15) dense(100) ReLU
ReLU ReLU dense(20)
conv(33

, 25) dense(100) BN
ReLU BN ReLU
conv(33

, ndims) ReLU dense(1)
Sigmoid dense(20)

BN
ReLU

dense(3)

A.5. Selected Visualizations
Fig. 7 demonstrates randomly selected predictions of

survival time with the trained network on BraTS dataset.

(a) P: 538 days, GT: 616 days (b) P: 590 days, GT: 515 days

(c) P: 748 days, GT: 698 days (d) P: 400 days, GT: 359 days

(e) P: 460 days, GT: 439 days (f) P: 464 days, GT: 486 days

Figure 7: Example predictions for BraTS, at resolution
256 ⇥ 256 ⇥ 256.

