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1. Introduction
This supplementary material includes the results for val-

idation of the spherical-homoscedasticity assumption (Sec-
tion 2), proof of Proposition 1 (Section 3), the proofs for
obtaining the optimal hard negatives (Section 4), the toy
examples demonstrating the effectiveness of using optimal
hard negatives (Section 5), the t-SNE plots for visualizing
the training process (Section 6), some results demonstrating
the effect of network architecture (Section 7), and results for
train-validate-test split (Section 8).

2. Validation of Spherical-homoscedastic Dis-
tributions Assumption

To validate the spherical-homoscedasticity assumption,
we project the embeddings (of samples belonging to the
same class) to a 3D space using principal component anal-
ysis (PCA). We need to show that the eigenvalues of the
covariance matrices of the data distributions of different
classes are close to one another. Fig. 1 shows the eigenval-
ues for four randomly picked classes. It is seen that these
eigenvalues are very close indeed for all the three datasets,
indicating a similar shape of data distributions (spherical-
homoscedasticity).

Further, we calculate the mean and standard devia-
tion (×100) of the three eigenvalues obtained by using
all the classes in each dataset. They are 7.02±1.84,
4.84±1.05, 3.84±0.84 for the CUB-200-2011 dataset,
3.67±1.17, 2.16±0.60, 1.56±0.41 for the Cars196 dataset,
and 12.24±5.25, 6.63±2.98, 3.93±2.04 for the SOP
dataset. The values of the standard deviations are small,
which again validates the assumption.

3. Proof of Proposition 1
Proposition 1. If the pairs of points x1, x2 and y1,
y2 (from two different classes) belong to spherical-
homoscedastic distributions, then the points on the curves
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>x1x2 and >y1y2 have a higher probability of belonging to
the same classes as x1, x2 and y1, y2, respectively, than
the other classes.

Proof. The definition of spherical-homoscedastic distribu-
tions says that such distributions are separated by decision
boundaries that are hyperplanes. In such a case, a region
between two points (say x1, x2) of the same class will also
belong to that class with a higher probability than the other
classes. Thus, any points sampled from that region will have
the highest probability of belonging to the same class as that
of x1, x2. As we assign class belongingness of an unknown
point based on the maximum probability or likelihood, the
points lying on the curves >x1x2 and >y1y2 will belong to
the same classes as x1, x2 and y1, y2, respectively.

4. Proofs for Finding Optimal Hard Negatives
In this section, we present the proofs for finding the op-

timal points p1 and p2, such that the distance between
a pair of positives and a pair of negatives is minimized.
Section 4.1 presents the case where the optimal points are
l2-normalized and lie on the hypersphere, whereas Sec-
tion 4.2 presents the case where optimal points are not l2-
normalized.

4.1. Proof for solution of optimal points with l2-
normalization

First, the expression for p1 is obtained as follows:
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(a) CUB-200-2011 dataset. (b) Cars196 dataset. (c) SOP dataset.

Figure 1: Representation of eigenvalues of the covariance matrices of four randomly picked classes for (a) CUB-200-2011,
(b) Cars196, and (c) SOP datasets. The embeddings have been projected to a 3D space using PCA. The model is trained
using the proposed approach with triplet loss. The values from the same position on the diagonal have been plotted together.

where the dot products are reduced to 1 or 0 as n1 and n2

are orthonormal vectors.
The KKT conditions to obtain the solution for the prob-

lem listed in Section 2.2 of the paper are mentioned again
for reference:

∂L

∂α
=
∂f

∂α
+ λ1 − λ2 (1)

= a cosα sinβ − b sinα sinβ + c cosα cosβ

− d sinα cosβ + λ1 − λ2 = 0, (2)
∂L

∂β
=
∂f

∂β
+ λ3 − λ4 (3)

= a sinα cosβ + b cosα cosβ − c sinα sinβ

− d cosα sinβ + λ3 − λ4 = 0, (4)

λigi = 0 ; i = 1, 2, 3, 4, (5)
λi ≤ 0 ; i = 1, 2, 3, 4, (6)
gi ≤ 0 ; i = 1, 2, 3, 4. (7)

The solutions for the 9 possible cases to be considered are
discussed below.

Note: The solutions to the equations involving α, β are
denoted by α̂, β̂.

Case 0: λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 0.
Using (2), (4), we obtain:

a cosα sinβ − b sinα sinβ + c cosα cosβ

−d sinα cosβ = 0, (8)
a sinα cosβ + b cosα cosβ − c sinα sinβ

−d cosα sinβ = 0. (9)

Simplifying these, we get:

cosα(a sinβ + c cosβ) = sinα(b sinβ + d cosβ), (10)
cosα(b cosβ − d sinβ) = sinα(c sinβ − a cosβ). (11)

Dividing both sides in (10), (11) by cosα cosβ, and then
dividing (10) by (11) we get:

a tanβ + c

b− d tanβ
=
b tanβ + d

c tanβ − a
.

This can be simplified to get:

tan2 β − a2 + b2 − c2 − d2

ac+ bd
tanβ − 1 = 0,

∴ β̂ = tan−1

(
B ∓

√
B2 + 4(ac+ bd)2

2(ac+ bd)

)
.

For β̂ < 0, we consider β̂ + π as a possible solution due to
the constraint g3.

Similarly, using (8), (9), we can form a quadratic equa-
tion in tanα:

tan2 α− a2 − b2 − c2 + d2

ab+ cd
tanα− 1 = 0,

∴ α̂ = tan−1

(
A±

√
A2 + 4(ab+ cd)2

2(ab+ cd)

)
.

Similar to the argument for β̂, α̂+π is considered as a possi-
ble solution when α̂ < 0. (In the aforementioned equations,
A = a2 − b2 + c2 − d2 and B = a2 + b2 − c2 − d2.)

Case 1: g1 = 0 (α̂ = 0), λ2 = 0, λ3 = 0, λ4 = 0.

∂L

∂β
= b cosβ − d sinβ = 0, =⇒ tanβ =

b

d
,

∴ β̂ = tan−1
(
b

d

)
. (12)

Using (1), (2), (12), we get:

λ1 = − ∂f

∂α

∣∣∣∣
α=0,β=β̂

Case 2: g2 = 0 (α̂ = α0), λ1 = 0, λ3 = 0, λ4 = 0.



Using (4), we obtain:

∂L

∂β
= a sinα0 cosβ + b cosα0 cosβ − c sinα0 sinβ

− d cosα0 sinβ = 0,

=⇒ tanβ =

(
a sinα0 + b cosα0

c sinα0 + d cosα0

)
,

∴ β̂ = tan−1
(
a sinα0 + b cosα0

c sinα0 + d cosα0

)
. (13)

Using (1), (2), (13), we get:

λ2 =
∂f

∂α
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α=α0,β=β̂

Case 3: g3 = 0 (β̂ = 0), λ1 = 0, λ2 = 0, λ4 = 0.
Using (2), we obtain:

c cosα− d sinα = 0, =⇒ tanα =
( c
d

)
,

∴ α̂ = tan−1
( c
d

)
. (14)

Using (3), (4), (14), we get:

λ3 = − ∂f

∂β

∣∣∣∣
α=α̂,β=0

Case 4: g4 = 0 (β̂ = β0), λ1 = 0, λ2 = 0, λ3 = 0.
Using (2), we obtain:

a cosα sinβ0 − b sinα sinβ0 + c cosα cosβ0

− d sinα cosβ0 = 0,

=⇒ tanα =
a sinβ0 + c cosβ0
b sinβ0 + d cosβ0

,

∴ α̂ = tan−1
(
a sinβ0 + c cosβ0
b sinβ0 + d cosβ0

)
. (15)

Using (3), (4), (15), we obtain:

λ4 =
∂f

∂β
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α=α̂,β=β0

Case 5: g1 = 0 (α̂ = 0), g3 = 0 (β̂ = 0), λ2 = 0, λ4 =
0.

Using (1), (2), we have:

∂L

∂α
=
∂f

∂α
+ λ1 = 0

λ1 = − ∂f

∂α

∣∣∣∣
α=0,β=0

Similarly using (3), (4), we get:

∂L

∂β
=
∂f

∂β
+ λ3 = 0

λ3 = − ∂f

∂β

∣∣∣∣
α=0,β=0

For cases 6-8, we can easily obtain the respective λi val-
ues in a similar fashion to case 5. These have already been
listed in Table 1 in the paper. For the aforementioned cases,
we consider α̂(β̂)+π as a possible solution when α̂(β̂) < 0
due to the constraint g1(g3).

4.2. Proof for solution of optimal points without l2-
normalization

In this case, f is obtained as:

f(k1, k2) = ||p1 − p2||22
= ||k1(x2 − x1)− k2(y2 − y1) + x1 − y1||22
= ||k1u− k2v −w||22.

The Lagrangian function is given by:

L(k1, k2, λ1, λ2, λ3, λ4) = f(k1, k2)−
4∑
i=1

λigi.

The constraints are mentioned below for reference:

g1 = −k1 ≤ 0 ; g2 = k1 − 1 ≤ 0,

g3 = −k2 ≤ 0 ; g4 = k2 − 1 ≤ 0. (16)

The partial derivatives for the KKT conditions are given as
follows:

∂L

∂k1
=
∂f

∂k1
+ λ1 − λ2 (17)

=u · (k1u− k2v −w) + λ1 − λ2 = 0, (18)
∂L

∂k2
=
∂f

∂k2
+ λ3 − λ4 (19)

=v · (−k1u+ k2v +w) + λ3 − λ4 = 0. (20)

The rest of the KKT conditions are given by (5), (6), and (7),
where gi’s are the ones mentioned in (16). In a simplified
form, (18) and (20) can be written as:

∂L

∂k1
= ak1 + bk2 + c+ λ1 − λ2 = 0, (21)

∂L

∂k2
= a′k1 + b′k2 + c′ + λ3 − λ4 = 0, (22)

respectively, where a = u · u, b = −u · v, c = −u · w,
a′ = −v · u, b′ = v · v, c′ = v ·w. The solutions for the 9
possible cases are discussed below.



Note: The solutions to the equations involving k1, k2 are
denoted by k̂1, k̂2.

Case 0: λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 0.
Using (21), (22) we get:

ak1 + bk2 + c = 0,

a′k1 + b′k2 + c′ = 0.

Solving for k1, k2 we get:

k̂1 =
b′c− bc′

a′b− ab′
, k̂2 =

ac′ − a′c
a′b− ab′

.

Case 1: g1 = 0 (k̂1 = 0), λ2 = 0, λ3 = 0, λ4 = 0.
Using (22), we get:

b′k2 + c′ = 0,

∴ k̂2 =
−c′

b′
. (23)

Using (21), (17), (23), we get:

λ1 = − ∂f

∂k1

∣∣∣∣
k1=0,k2=k̂2

Case 2: g2 = 0 (k̂1 = 1), λ2 = 0, λ3 = 0, λ4 = 0.
Using (22), we get:

a′ + b′k2 + c′ = 0,

∴ k̂2 = −a
′ + c′

b′
. (24)

Using (21), (17), (24), we obtain:

λ2 =
∂f

∂k1

∣∣∣∣
k1=1,k2=k̂2

Similar to the aforementioned 2 cases we can obtain the
following results for case 3, and case 4.

Case 3: g3 = 0 (k̂2 = 0), λ1 = 0, λ2 = 0, λ4 = 0.
Using (21), (22), (19), we get:

k̂1 = − c
a

=⇒ λ3 = − ∂f

∂k2

∣∣∣∣
k1=k̂1,k2=0

Case 4: g4 = 0 (k̂2 = 1), λ1 = 0, λ2 = 0, λ3 = 0.
Using (21), (22), (19) we get:

k̂1 = −b+ c

a
=⇒ λ3 =

∂f

∂k2

∣∣∣∣
k1=k̂1,k2=1

Case 5: g1 = 0 (k̂1 = 0), g3 = 0 (k̂2 = 0), λ2 =
0, λ4 = 0.

Using (21), (17), and (22), (19), we get:

λ1 = − ∂f

∂k1

∣∣∣∣
k1=0,k2=0

λ3 = − ∂f

∂k2

∣∣∣∣
k1=0,k2=0

Case 6: g1 = 0 (k̂1 = 0), g4 = 0 (k̂2 = 1), λ2 =
0, λ3 = 0.

Using (21), (17), and (22), (19), we get:

λ1 = − ∂f

∂k1

∣∣∣∣
k1=0,k2=1

λ4 =
∂f

∂k2

∣∣∣∣
k1=0,k2=1

Case 7: g2 = 0 (k̂1 = 1), g3 = 0 (k̂2 = 0), λ1 =
0, λ4 = 0.

Using (21), (17), and (22), (19), we get:

λ2 =
∂f

∂k1

∣∣∣∣
k1=1,k2=0

λ3 = − ∂f

∂k2

∣∣∣∣
k1=1,k2=0

Case 8: g2 = 0 (k̂1 = 1), g4 = 0 (k̂2 = 1), λ1 =
0, λ3 = 0.

Using (21), (17), and (22), (19), we get:

λ2 =
∂f

∂k1

∣∣∣∣
k1=1,k2=1

λ4 =
∂f

∂k2

∣∣∣∣
k1=1,k2=1

5. Analysis of Triplet Loss with Optimal Hard
Negatives

Given two pairs of points in the embedding space: x1,
x2 and y1, y2, belonging to two different classes. The
triplet loss is formulated as follows:

LTri = [d(x1,x2)− d(x1,y1) +m]+ . (25)

The modified triplet loss obtained by incorporating the
proposed approach is given by:

L′Tri = [d(x1,x2)− d(p1,p2) +m]+ , (26)

where p1 and p2 lie on arcs >x1x2 and >y1y2, respectively.
The gradients with respect to the four samples are given by:

∂L′Tri
∂x1

= 21L′
Tri>0

[
(x1 − x2)− (p1 − p2) ·

(
∂p1

∂x1

)]
,

(27)



Figure 2: Illustrations of the 9 cases in which the KKT conditions for finding the minimum distance between arcs >x1x2 and
>y1y2 can be satisfied.

Figure 3: An example showing four samples and their updated positions obtained by using the gradients for different choices
of p1 and p2. The samples have been selected such that x1 and y1 are the hardest negatives.

Figure 4: An example showing four samples and their updated positions obtained by using the gradients for different choices
of p1 and p2. The samples have been selected such that x1 and y1+y2

2 are the hardest negatives.

∂L′Tri
∂x2

= 21L′
Tri>0

[
−(x1 − x2)− (p1 − p2) ·

(
∂p1

∂x2

)]
,

(28)

∂L′Tri
∂y1

= 21L′
Tri>0

[
(p1 − p2) ·

(
∂p2

∂y1

)]
, (29)



∂L′Tri
∂y2

= 21L′
Tri>0

[
(p1 − p2) ·

(
∂p2

∂y2

)]
. (30)

Fig. 2 depicts the 9 possible ways in which p1 and p2

can be selected. Figs. 3 and 4 show two examples where the
four samples and their updated positions obtained by using
the gradients for different choices of p1 and p2 are shown.
In these Figs., when p1 and p2 are not one of the end points,
they are the midpoints of the arcs on which they lie.

The objective of metric learning is to enable samples
from the same class move towards each other and away
from the samples of different classes. We use this criteria to
analyze the updated samples in each case of Figs. 3 and 4.

In Fig. 3, x1 and x2 are not moving towards each other
in cases 2, 7, 8, whereas in cases 4, 6, 8, y1 and y2 are mov-
ing away from each other. Further, the distance between y1

and y2 remains the same in cases 0-2. Among cases 3 and
5, the distance between updated samples x1 and x2 is closer
in case 5, and hence the optimal set of negatives (p1, p2) is
(x1, y1). This can also be seen visually, as x1 and y1 are
the closest points between the two curves.

In Fig. 4, x1 and x2 are not moving towards each other
in cases 2, 7, 8, whereas in cases 3-8, y1 and y2 are moving

away from each other. Among cases 0 and 1, the distance
between updated samples x1 and x2 is closer in case 1, and
hence the optimal set of negatives (p1, p2) is (x1, y1+y2

2 ).
This can also be seen visually, as x1 and y1+y2

2 are the
closest points between the two curves.

6. t-SNE Visualization of the Embedding Space
We visualize the embedding space using the Barnes-Hut

t-Distributed stochastic neighbor embedding (t-SNE) tech-
nique [15]. Fig. 5 shows the t-SNE plots when the combina-
tion of LoOp and triplet loss is used for training the Cars196
dataset. It can be seen that with increasing epochs, the clus-
ters become more distinct. Further, as training progresses,
the synthetic samples (red) lie within the area occupied by
the original samples (blue).

It is important to note that although the epoch numbers
in Fig. 5 seem large, the iterations per epoch, given by
Number of classes×Samples per class

Batch size , are small in number.

7. Effect of Network Architecture
In order to observe the effect of the network architec-

ture on the proposed approach, we deploy two architectures,

(a) Epoch 10. (b) Epoch 50. (c) Epoch ∼ 200.

(d) Epoch ∼ 400. (e) Epoch ∼ 4000. (f) Epoch ∼ 8500.

Figure 5: t-SNE visualization of LoOp with triplet loss using CARS196 dataset showing the embeddings of the train data
for different epochs. Blue samples are the original training samples, while Red samples are the synthetic samples generated
by LoOp. The marker size of synthetic samples is bigger to improve visibility. As we move from (a) to (f), the red samples
become less and less visible as they lie in the same region as the original samples.



Method NMI R@1 R@2 R@4

Triplet Semi-hard [11] 55.4 42.6 55.0 66.4
StructClustering [13] 59.2 48.2 61.4 71.8
Proxy NCA [8] 59.5 49.2 61.9 67.9
Binomial Deviance [14] - 50.3 61.9 72.6
N-pair [12] 60.4 51.0 63.3 74.3
DVML [7] 61.4 52.7 65.1 75.5
Histogram [14] - 52.8 64.4 74.7
ECAML [1] 60.1 53.4 64.7 75.1
Angular [16] 61.0 53.6 65.0 75.3
HDC [17] - 53.6 65.7 77.0
EE [6] 59.9 55.0 67.3 77.6
HTL [2] - 57.1 68.8 78.7
BIER [10] - 57.5 68.7 78.3
HTG [18] - 59.5 71.8 81.3
ABE [5] - 60.6 71.5 79.8

LoOp-IBN (Ours) 66.0 60.4 72.1 81.4
LoOp-R50 (Ours) 64.4 61.1 72.5 81.7

Table 1: Comparison of clustering and retrieval perfor-
mance with SOTA methods for CUB-200-2011 dataset.
Bold numbers indicate the best values. - indicates not re-
ported. IBN: Inception-BN, R50: ResNet-50.

namely Inception-BN [4] and ResNet-50 [3] as the feature
extractors, pre-trained on the ImageNet ILSVRC dataset.
In both the cases, the embeddings are l2-normalized and the
batch normalization layers are frozen. The learning rate is
set as 10−5, and a weight decay multiplier of 4 × 10−4 is
used. The rest of the parameters are kept the same as men-
tioned in the paper. We report the NMI and Recall@K val-
ues to measure the performance.

Table 1 presents the results of our approach and compar-
isons with state-of-the-art (SOTA) methods, like deep vari-
ational metric learning (DVML) [7], energy confused ad-
versarial metric learning (ECAML) [1], hierarchical triplet
loss (HTL) [2], boosting independent embeddings robustly
(BIER) [10], hard triplet generation (HTG) [18], attention-
based ensemble (ALE) [5], as well as metric learning-
based loss functions, like triplet with semi-hard mining
[11], proxy NCA [8], N-pair [12], histogram [14], angu-
lar [16]. To show that improvements carry over to R-50, we
run EE [6] with R-50 and compare the increase in (NMI,
R@1, R@2, R@4) for LoOp vs. EE with triplet loss: (4.2,
6.0, 6.1 6.3) for GoogLeNet, (4.5, 6.1, 5.2, 4.1) for R-50.
It can be seen that LoOp outperforms all the other methods
for both clustering and retrieval tasks.

8. Results for Train-Validate-Test Split

Table 2 shows the comparison of results for train-
validate-test [9] and train-test splits. These results are ob-
tained using the same settings in Section 7, using ResNet-50
architecture and CUB-200-2011 dataset.

Split NMI R@1 R@2 R@4

Train-Validate-Test 59.8 56.4 68.6 78.9
Train-Test 64.4 61.1 72.5 81.7

Table 2: Comparison of results for train-validate-test and
train-test splits using CUB-200-2011 dataset.
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