
Supplementary Material:
Deep Implicit Surface Point Prediction Networks

Rahul Venkatesh1 Tejan Karmali2 Sarthak Sharma3 Aurobrata Ghosh3

R. Venkatesh Babu2 László A. Jeni1* Maneesh Singh3*

1Carnegie Mellon University, Pittsburgh, PA, USA 2Indian Institute of Science, Bengaluru, India
3Verisk Analytics, Jersey City, NJ, USA

Supplementary Material
In the paper, we presented results from the shape-agnostic CSP network (a single function for all shapes) which for a given

encoded shape provided at the input, produced the closest surface point for the queried input point. Here, we first supplement
those results with a single-shape CSP network. This is presented in (Sec. 1) below.

Subsequent sections present additional details for the experimental evaluation in the main paper as follows:

• The network architecture and training details pertaining to the shape representation trained in Section 4.1 in the main
paper are presented in Sec. 2.

• Details for the Jacobian computed in Section 4.2 of the main paper and its computational performance are presented in
Sec. 3.

• The experimental setup used for rendering and meshing (Section 4.3 of the main paper) is described next in (Sec. 4).
• Sec. 5 presents additional qualitative results for rendering via sphere tracing, supplementing those presented in Section

4.3 of the main paper.
• Sec. 6 share the details of the various off-the-shelf tools used in our implementations and experimental evaluation.

1. Single-shape CSP

Figure 1: Single
shape CSP

While the primary focus of this work was to build a single, shape-agnostic CSP model, we present
here a model for a single-shape CSP implemented as follows: For any input point (or query point)
in the 3D space, p, a 10-layer MLP estimates the closest point on the surface, p̂. Let fci denote a
fully-connected layer with i output dimensions. Then the MLP is given by

fc120, fc512, fc1024, fc2048, fc2048,
fc1024, fc512, fc256, fc128, fc3

where the input dimension of fci is determined by the output dimension of the layer prior to it and
every fc layer is followed by ReLU non-linearity, except the final layer. The architecture of the
single-shape CSP is presented in Fig. 1.

We present qualitative results for single shape reconstruction for a few complex shapes in Figures 2 and 3, illustrating
the ability of CSP to model complex shapes with high fidelity having either an open or a closed topology. It can be clearly
seen that CSP is able to preserve surface details and accurately represent the surface orientations. In Figures 2 and 3, we
present results on complex shapes like (a) a dried rose, and, (b) a lion statute having an intricate design and regions of varying
curvature (c) a bathtub, that has high levels of detail and complex sub-structures, (d) the seifert surface [11], that has complex
topology (multiple holes and knots).

2. Training and architecture details
This section shares the network architecture modeling the shape representation in Section 4.3 of the main paper and details

for training it.
1indicates two authors equally advised



Lion

Figure 2: Single Shape reconstructions: Renderings from single shape architecture described in Sec. 1. Here, we evaluate
CSP independently on two shapes with complex structures. We show lighted normals (row 1 of each shape) as well as the
raw normal map (row 2 of each shape) using both normal estimation methods (see Sec. 3.2 in main paper) and compare
against the ground truth for the same. The CSP (jac.) results in higher quality normals compared to CSP (fwd.), which are
reasonably comparable, but provide us with faster estimates (Highlighted in Red). More examples on next page.

We use the 3D volumetric encoder architecture proposed in [9] with a feature volume of resolution 64. Since our point
estimation task is arguably more complex than binary occupancy prediction, we use a larger decoder, with 512 hidden units
(with the same architecture as in [9]).

We train with a batch size of 32 on different shapes, with an input point cloud of size 3000 (we follow the setup in
NDF [2]). For each shape in the batch, we use 10K points sampled from the training points, P (See Sec. 4.1.2 of the main
paper). We train on an NVIDIA GeForce RTX 2080Ti GPU using an ADAM [8] optimizer and a learning rate of 1e−4. It
takes ≈ 5 days to train on the full ShapeNet dataset.

3. Jacobian Computation: Implementation Details
We now share the implementation details for the Jacobian computation as described in Sec. 3.2.1 of the main paper and

discuss implications on its computational performance.

2



Lion

Figure 3: Single Shape reconstructions: Here, we show some results on a bathtub which has a high level of detail, with
complex sub-structures, and a seifert surface which has complex topology (knots and holes).

The Jacobian is computed using 1 forward pass and 3 backward passes (one for each row of the Jacobian) through the same
network. For this, we use the autograd package in PyTorch and set retain_graph=True when computing the first
row of the Jacobian. This caches the activations in the graph and makes them readily available for computing the subsequent
rows, speeding up the computation of the Jacobian.

We logged the time taken to estimate the Jacobian matrix for the experiments described in Sec. 4.3 of the main paper for
CSP (jac.) and find that it takes on an average 0.08s for a 512×512 image. In comparison, NDF is faster and takes 0.063s.
This is to be expected as NDF just needs 1 forward and 1 backward pass. However, given that the computational graph needs
to be obtained only once, we only incur an additional 25% overhead (0.017s). Therefore, this is a reasonable trade-off for
extracting high-fidelity surface normals.

On the other hand, we also proposed an extremely fast method, CSP (fwd.), which computes surface normals in a forward-
mode taking only 0.003s for a 512×512 image and is of a quality surpassing that of NDF (See Table 4 of main paper).

4. Meshing and Rendering: Experimental setup
Results for setup used for rendering and meshing are presented in Section 4.3 of the main paper. Here we provide details

of the experimental setup.
Rendering. For a given input point cloud, we first compute the 3D feature volume from the encoder. We then render the
learnt CSP representation (modeled using the decoder) from 3 different views. For doing so, we create a batch of rays from
each viewpoint (3 views give us a total of 512×512×3=0.79M rays), and begin the sphere-tracing process (batched/parallel)

3



for these set of rays. At the termination of sphere-tracing, we compute the surface normals for each ray (using gradients
in case of NDF, and NVF in case of CSP). Since NVF does not require a backward pass, it can accommodate a batch of
0.5M rays on a 8GiB GPU. The corresponding batch size for NDF is much lower at 0.15M since it requires the computation
of gradients. As reported in Table 5 of the main paper, the increased batch size leads to a significant improvement in the
rendering speed (i.e. time taken to compute the surface normals).

Meshing. We present here additional details for meshing CSPs using the novel coarse-to-fine meshing strategy outlined in
Sec. 3.3.2 of the main paper. We compute a 3D distance grid (of resolution = 256) using the proposed hierarchical space
subdivision strategy, and perform meshing using Marching Cubes (using libmcubes [10]) with a small positive threshold of
ε = 0.006. For NDF, we use the code provided by authors to generate a dense point cloud (of 1M points) and mesh it using
the ball-pivoting [1] tool in meshlab [3], using a ball-radius of 0.01.

In our experiments, we have found the ball-pivoting process to be very sensitive to this threshold, and in many cases it
had to be tuned per-shape. On the other hand, our method uses a single threshold for all shapes, and generates high-fidelity
meshes. Moreover, as reported in Sec. 4.3 of the main paper, our coarse-to-fine meshing strategy is significantly faster than
that of NDF.

5. Additional qualitative results
To supplement the qualitative results on the various sphere-tracing strategies (Fig. 5 of main paper), in Fig. 4, 5, we show

additional results which compare depth maps generated using our novel sphere-tracing algorithm for CSP, against a vanilla
sphere-tracing technique for unsigned distance functions. Further, in Fig. 6, 7, 8, 9, 10 we show additional examples of
shape reconstruction which bolster the results shown in Fig.1 of the main paper, and demonstrate the capability of our class-
agnostic model to reconstruct shapes from any class of ShapeNet. All results are shown on a test-set of shapes (ShapeNet
test-set used in [6]) not seen in training. Additionally, to reiterate the utility of meshes generated by our novel meshing
algorithm for CSPs (Sec. 3.3.2 of main paper), we also show some representative meshes (compared against GT meshes)
generated in Fig. 11.

6. Off The Shelf Tools and Packages Used
In this work, we make use of a variety of off-the-shelf packages to run our experiments. For generating data, we use

faiss [7], which is a library for performing fast nearest neighbour search on GPU. We compute GT normal and depth maps
using the trimesh [5] with pyembree bindings viz. trimesh.ray.ray_pyembree.RayMeshIntersector.
torch-scatter1 is used for trilinear interpolation of the 3D Feature Volume (See Fig. 2 of the main paper). For sphere-
tracing CSP, we provision a custom implementation in PyTorch, which renders multiple images efficiently by batching
rays across different views.

1https://github.com/rusty1s/pytorch scatter

4

https://github.com/rusty1s/pytorch_scatter


Figure 4: Comparison of depth maps generated by Vanilla Sphere Tracing (ST) and our novel projection-based algorithm
outlined in Sec. 3.3.1 of the main paper. We find that our method generates much lesser error when compared to the
conventional sphere-tracing strategy.

5



Figure 5: Additional results showing depth error maps.

6



Figure 6: Surface reconstruction results on exemplar shapes from ShapeNet test set. Here, we show both CSP (jac.) and
CSP (fwd.) (α = 0.005) side-by-side, with the first row of each shape depicting a rendering of the sphere-traced surface
normal map (shown in the second row) with directional light. We find that both methods (see Sec. 3.2 for a description of
these methods, and Sec. 4.2 for some initial results reported in main paper) yield high-quality surface normals (with CSP
(fwd.)) providing efficient forward-mode normal estimates. Note also that CSP (jac.) is marginally better in some regions
(Highlighted in red.).

7



Figure 7: Additional surface reconstruction results from ShapeNet test set.

8



Figure 8: Additional surface reconstruction results from ShapeNet test set.

9



Figure 9: Additional surface reconstruction results from ShapeNet test set.

10



Figure 10: Additional surface reconstruction results from ShapeNet test set.

11



Figure 11: Meshes generated by our novel coarse-to-fine meshing algorithm for CSPs (see Sec. 3.3.2 of main paper). We
also show the Ground Truth mesh on the right of each subfigure. Note that our algorithm generates structurally consistent
meshes, which render visually pleasing images in Blender [4].

12



References
[1] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Claudio Silva, and Gabriel Taubin. The ball-pivoting algorithm for surface

reconstruction. IEEE transactions on visualization and computer graphics, 5(4):349–359, 1999. 4
[2] Julian Chibane, Mohamad Aymen mir, and Gerard Pons-Moll. Neural unsigned distance fields for implicit function learning. In

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 21638–21652. Curran Associates, Inc., 2020. 2

[3] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. Meshlab: an
open-source mesh processing tool. In Eurographics Italian chapter conference, volume 2008, pages 129–136. Salerno, Italy, 2008. 4

[4] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation,
Amsterdam, 2018. 12

[5] Dawson-Haggerty et al. trimesh. 4
[6] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object reconstruction from a single image. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 605–613, 2017. 4
[7] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734, 2017. 4
[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 2
[9] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional occupancy networks. In

Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages 523–540,
Cham, 2020. Springer International Publishing. 2

[10] David Stutz and Andreas Geiger. Learning 3D shape completion from laser scan data with weak supervision. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1955–1964, 2018. 4

[11] Jarke J Van Wijk and Arjeh M Cohen. Visualization of seifert surfaces. IEEE Transactions on Visualization and Computer Graphics,
12(4):485–496, 2006. 1

13


