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Figure I. Visualization of feature similarity maps between ×2/3/4 SR networks.

Section I includes more examples of feature similarity
with additional discussions. Section II describes the pixel
shuffling layer and the proposed scale-aware upsampling
layer. Then, additional analyses with respect to our net-
works are presented in Section III. Finally, Section IV pro-
vides additional quantitative and qualitative results.

I. Feature Similarity
It has been demonstrated in several SR methods devel-

oped for multiple degradations [1, 2, 3, 4] that features in the
network vary for different degradations. Intuitively, features
learned for various scale factors are also different since their
bicubic degradations are different [5, 6]. To demonstrate
this, we show feature similarity maps achieved by ×2/3/4
EDSR and RCAN on different images in Fig. I. It can be
observed that features learned for ×2/3/4 SR are different,
with mean similarity being 0.77. Moreover, feature simi-
larity varies for different blocks and regions. Specifically,
regions with strong textures (e.g., the cheetah) usually have
higher similarities than those flat regions (e.g., the lake). We
further compare features within regions of different similar-
ities in Fig. II. As we can see, features within flat regions
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Figure II. Comparison of features within different regions.

changes more significantly for different scale factors than
those in edge regions. This further demonstrates the varia-
tions of features learned for different scale factors.

Motivated by these observations, we propose to learn a
guidance map to perform pixel-wise feature adaption ac-
cordingly. Although early attempts [7, 8, 9] show it is fea-
sible to use shared features to handle multiple scale factors,
these methods suffer inferior performance since the differ-
ence among features learned for various scale factors is not
considered [10]. It is illustrated in Section 4.3 (Model 4 vs.
Model 1 in Table 1) that our network benefits from scale-
aware feature adaption to produce better results. This fur-
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Figure III. Statistics of filters learned for different scale factors.

ther validates the difference of features learned for various
scale factors.

We also conduct experiments to study the difference of
feature similarities among various regions. It is observed
in [3] that filters of restoration models trained with differ-
ent restoration levels are similar at visual patterns but have
different statistics (e.g., mean value). Inspired by this ob-
servation, we further investigate the statistics of the filters
in×2/3/4 SR models. It can be observed in Fig. III that fil-
ters in ×2/3/4 SR models share a similar observation with
[3]. Specifically, filters learned for different scale factors
have high cosine similarities (Fig. III(a)) with quite differ-
ent mean values (Fig. III(b)). That is, there is a mean shift
of convolutional filters learned for different scale factors.
For flat regions, neighboring pixels have the same sign such
that this mean shift is accumulated (Fig. III(d)). In con-
trast, since neighboring pixels in edge regions usually have
opposite signs, the effect of mean shift is weakened. Con-
sequently, features within flat regions changes more signif-
icantly than edge regions. We suppose that since LR im-
ages used to train×2 SR networks contain much more low-
frequency components (Fig. IV), ×2 models learn higher
response to highlight these components in the network.

II. Scale-Aware Upsampling Layer

We illustrate the pixel shuffling layer and our scale-
aware upsampling layer in Fig. V. It can be observed from
Fig. V(a) and (b) that the pixel shuffling layer can be con-
sidered as a two-step pipeline, which consists of a sampling
step and a spatially-varying filtering step. Therefore, we
generalize the pixel shuffling layer to a scale-aware upsam-
pling layer, as shown in Figs. V(c) and (d). Specifically, for
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Figure IV. Comparison of components with different frequencies
in the training dataset for ×2/4 SR. Results are averaged over 50
LR images.

location (x, y) in HR space, its coordinates (L(x) and L(y))
and relative distances (R(x) and R(y)) in LR space are first
calculated, as shown in Fig. V(c). Then, horizontal and ver-
tical scale factors (rh and rv), R(x) and R(y) are used to
produce offsets (δx and δy) and a pair of k × k convolu-
tional kernels. Finally, a k × k neighborhood centered at
(L(x)+δx, L(y)+δy) is sampled and the predicted kernels
are used to generate the output feature at location (x, y), as
shown in Fig. V(d).

III. Additional Analyses

III.I. Different Settings for Non-Integer SR

To perform SR with non-integer scale factors (e.g.,×2.5)
on an LR image (e.g., 60×60) using baseline networks like
RCAN, we have four different settings:

• Setting 1: Bicubicly downscale the LR image to the
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Figure V. An illustration of the pixel shuffling layer and our scale-aware upsampling layer.

size of 50 × 50 and then super-resolve the result for
×3 SR.

• Setting 2: Bicubicly upscale the LR image to the size
of 75×75 and then super-resolve the result for×2 SR.
Note that, this setting degrades to bicubic interpolation
for scale factors lower than 2 (e.g., ×1.55).

• Setting 3: Super-resolve the LR image for ×2 SR and
then bicubicly upscale the result (120 × 120) to the
size of 150× 150. Note that, this setting also degrades
to bicubic interpolation for scale factors lower than 2
(e.g., ×1.55).

• Setting 4: Super-resolve the LR image for ×3 SR and



Table I. PSNR results achieved on Set5 and Set14 for non-integer scale factors.
Set5 Set14

×1.55 ×1.8 ×2 ×2.35 ×2.5 ×2.95 ×3.1 ×3.8 Avg ×1.55 ×1.8 ×2 ×2.35 ×2.5 ×2.95 ×3.1 ×3.8 Avg
RCAN [11] (Setting 1) 36.24 36.40 38.27 32.80 33.44 31.66 29.92 30.76 33.69 32.32 32.45 34.12 29.17 29.60 28.12 27.04 26.85 29.96
RCAN [11] (Setting 2) 36.24 34.70 38.27 32.59 32.19 30.36 30.62 29.08 33.00 32.53 31.12 34.12 29.42 28.97 27.80 27.84 26.27 29.76
RCAN [11] (Setting 3) 36.24 34.70 38.27 36.26 35.83 34.21 34.38 32.88 35.35 32.53 31.12 34.12 32.15 31.65 30.17 30.26 28.85 31.36
RCAN [11] (Setting 4) 40.77 39.08 38.27 36.45 36.16 34.74 34.37 33.04 36.61 36.96 34.99 34.12 32.36 31.94 30.53 30.26 28.97 32.52
ArbRCAN (Ours) 40.97 39.20 38.26 36.55 36.22 34.77 34.50 33.04 36.69 37.05 35.15 34.09 32.48 32.01 30.59 30.37 29.01 32.60

Table II. PSNR results achieved on Set5 and Set14 for asymmetric scale factors.
Set5 Set14

×1.3
×1.5

×1.6
×2.95

×1.6
×3.45

×1.55
×3.5

×1.75
×3.5

×4
×1.5

×3.5
×2

×3
×1.95

Avg ×1.3
×1.5

×1.6
×2.95

×1.6
×3.45

×1.55
×3.5

×1.75
×3.5

×4
×1.5

×3.5
×2

×3
×1.95

Avg

RCAN [11] (Setting 1) 41.75 35.62 34.55 34.52 34.38 34.28 34.94 35.73 35.72 38.17 32.13 31.13 31.17 30.95 30.40 30.72 31.69 32.04

RCAN [11] (Setting 2) 41.75 36.02 35.03 35.02 34.88 34.97 35.33 36.11 36.14 38.17 32.32 31.34 31.41 31.15 30.70 31.02 31.96 32.26

Meta-RCAN [12] (Setting 1) 38.02 32.03 31.15 31.11 30.91 30.97 31.32 32.11 32.20 34.26 29.45 28.68 28.62 28.47 27.96 28.16 28.88 29.31

Meta-RCAN [12] (Setting 2) 42.04 36.03 35.15 35.22 35.06 35.01 35.47 36.09 36.26 38.29 32.43 31.49 31.54 31.30 30.91 31.10 31.94 32.38

ArbRCAN (Ours) 42.16 36.21 35.29 35.35 35.16 35.25 35.60 36.23 32.41 38.45 32.51 31.57 31.63 31.37 31.04 31.27 32.11 32.49

then bicubicly downscale the result (180× 180) to the
size of 150× 150.

The comparison of these four settings is presented in Ta-
ble I. Compared to settings 1 and 2, using bicubic inter-
polation as a post-processing (settings 3 and 4) produces
much higher PSNR values. Moreover, setting 4 achieves
the best performance. Therefore, setting 4 is referred to as
the default setting to achieve non-integer SR using baseline
networks in the main text.

III.II. Different Settings for Asymmetric SR

To super-resolve an LR image (e.g., 60×60) with asym-
metric scale factors (e.g., ×2.5

×1.5 ) using baseline networks like
RCAN, we have two different settings:

• Setting 1: Super-resolve the LR image for ×2 SR
(ceil(1.5)) and then bicubicly rescale the result (120×
120) to the size of 150× 90.

• Setting 2: Super-resolve the LR image for ×3 SR
(ceil(2.5)) and then bicubicly downscale the result
(180× 180) to the size of 150× 90.

For Meta-SR networks like Meta-RCAN, we also have two
different settings to perform SR with asymmetric scale fac-
tors (e.g., ×2.5

×1.5 ) on an LR image (e.g., 60× 60):

• Setting 1: Super-resolve the LR image for ×1.5 SR
and then bicubicly upscale the result (90 × 90) to the
size of 150× 90.

• Setting 2: Super-resolve the LR image for ×2.5 SR
and then bicubicly downscale the result (150× 150) to
the size of 150× 90.

Note that, we only focus on settings using bicubic interpola-
tion as a post-processing due to their superior performance

(as demonstrated in Sec. III.I). The performance of RCAN
and Meta-RCAN with different settings are compared in Ta-
ble II. As we can see, setting 2 outperforms setting 1 for
both RCAN and Meta-RCAN. Thus, we use setting 2 as the
default setting to perform SR with asymmetric scale factors
in the main text.

IV. Additional Results
IV.I. SR with Non-Integer Scale Factors

Quantitative Results. We compare our ArbRCAN to
Meta-RCAN and RCAN on SR with non-integer scale fac-
tors. Comparative results achieved on the Set5 and Set14
datasets are shown in Table III. It can be observed that our
ArbRCAN produces comparable or better performance as
compared to other methods on most scale factors. Specifi-
cally, our ArbRCAN outperforms Meta-RCAN on Set5 for
×1.55/3.1 SR, with higher PSNR values being achieved
(40.97/34.50 vs. 40.93/34.44).
Qualitative Results. Figure VI illustrates the visual re-
sults achieved on three images of the Urban100 dataset. It
can be observed from the zoom-in regions that our ArbR-
CAN produces results with better perceptual quality than
other methods for different non-integer scale factors. For
example, Meta-RCAN produces obvious blurring artifacts
on “img 049”. In contrast, our network recovers clearer
stripes.

IV.II. SR with Asymmetric Scale Factors

Quantitative Results. We compare our ArbRCAN to
Meta-RCAN and RCAN on SR with asymmetric scale fac-
tors. Comparative results are presented in Table IV. As
we can see, our ArbRCAN achieves the best performance
on all scale factors. Further, the performance improve-
ments on highly asymmetric scale factors are more signif-



Table III. PSNR results achieved on Set5 and Set14 for non-integer scale factors.
Set5 Set14

×1.55 ×1.8 ×2 ×2.35 ×2.5 ×2.95 ×3.1 ×3.8 Avg ×1.55 ×1.8 ×2 ×2.35 ×2.5 ×2.95 ×3.1 ×3.8 Avg
Bicubic 36.24 34.70 33.65 32.18 31.77 30.04 29.89 28.75 35.15 32.53 31.12 30.09 28.95 28.61 27.46 27.22 26.14 29.02
RCAN [11](+Bicubic) 40.77 39.08 38.27 36.45 36.16 34.74 34.37 33.04 36.61 36.96 34.99 34.12 32.36 31.94 30.53 30.26 28.97 32.52
Meta-RCAN [12]+ft 40.93 39.20 38.21 36.53 36.20 34.76 34.44 33.03 36.66 37.01 35.15 34.03 32.48 31.98 30.56 30.37 29.04 32.57
ArbRCAN (Ours) 40.97 39.20 38.26 36.55 36.22 34.77 34.50 33.04 36.69 37.05 35.15 34.09 32.48 32.01 30.59 30.37 29.01 32.60
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Figure VI. Visual comparison for non-integer SR.

icant (e.g., 35.25(↑0.24)/35.60(↑0.13) vs. 35.01/35.47 on
Set5 for ×4

×1.5/
×3.5
×2 SR).

Qualitative Results. Figure V compares the visual results
achieved on three images of the Urban100 dataset. From the
zoom-in regions, we can see that the results produced by our
ArbRCAN have better visual quality than other methods for
different asymmetric scale factors, such as the number “65”
in “img 006”.

IV.III. SR in the Wild

We further compare our ArbRCAN to Meta-RCAN on
two real-world images in Fig. VI. It can be observed from
the zoom-in regions that our ArbRCAN consistently pro-
duces clearer and finer details than Meta-RCAN. For exam-
ple, our ArbRCAN faithfully recovers the text “HE” while
Meta-RCAN suffers distorted artifacts.
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×1.3
×1.5
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×3
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Figure V. Visual comparison for asymmetric SR.
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Figure VI. Visual comparison on real-world images.
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