Appendix

A Proof of Theorem 3.1

Proof. Let X = U #, 8 #, V' be the t-SVD of X. By the orthogonality of L and the definition of tensor average
rank, the problem (20) is equivalent to

1
Dy(X) € arg m}i;n 5”); — X% + rank, () (A1)
1 - _ _
€ argmin Y- X% + rank,(Y) (A.2)
ns 1 _ . _ _
= arg m};n;(j\X(” — Y @2 4 Arank(Y ?)), (A3)

which is separable to each frontal slice in the transform domain. By the Corollary 2.2 in [1]], we get that the ¢-th frontal
slice of D (X) solves the i-th subproblem of (A.3)) . Hence, D (X) solves problem (20). O

B Proof of Proposition 3.1

Proof. Let X = U #; 8 #, V" be the t-SVD of X. By Theorem 3.1, the right side of (21) equals to
1
S PA(X) — X[ + rank, (D5 (X)) (B.1)

Substituting the explicit form of D (X) in (18) into (B.I)) and by the orthogonality of U and V, (B.I)) can be simplified
as .
=2
oy 2 Sun A (B.2)
(i,k)¢A
where A is the set defined by ~
A= {(Z, k)|8“k > \/2)\},

and #A denotes its cardinality. We can prove (21) by directly verifying the definition of ®(X’) in (15). Moreover, if
min S?M

A < 55—, we get that D (X) = X. Hence, @) (X) = rank, (X). .

The following notation is needed for presenting the convergence analysis. For a tensor X' € RTX_"QX”% let
o(X®) denote the singular value vector of the i-th frontal slice of X = L(X’). We denote by o;(X () the j-th
component of (X () with 1 < j < min(n, ny).

Lemma B.1. Letr {Y}.} be generated by (23), then
(1) Either O'j(?k(i)) > 2 \u or oj(i_’k(i)) =0, foralll <i<ns,1<j<min(ng,ne),
(2) [Yr+1 = Vilr = V2Ap, if rank, (Y1) # ranka (V).



Proof. Ttem (1) follows immediately from the closed-form solution of {Y;} in (23). Suppose that rank,(Ygi1) #
rank, (Yy) for some k, by Item (1), there exist at least one ¢ and one j such that either o; (Yk(+)1) = V2, 0 (Y( ))
Ooroj (Yk(+)1) =0,0j (l_’k(i)) > 4/2Ap. For both cases, we have that

lo (¥ ) = o (V)2 = v/2Au.

Moreover, for any 1 < ¢ < ng, we know from Corollary 7.1.4.3 of [2] that

¥ =Y = o (V) = o (B,
The above two inequalities and the orthogonality of L yield Item (2). O

C Proof of Theorem 3.2

Proof. Denote
1
EQ,X) = o1 |¥ = X[ + ranka (),

By the second subproblem in (23), we conclude that

1Vis1 = Xisap < [PVrsr — Xz

Then we have that

E(yk+1a Xk+1)

1
5\\yk+1 — Xis1|p + Arank, (Vii1)

< IV — il 4 ranky (V). 1
Expanding the term | Yy+1 — Xk |3 yields
AEYin, Xinn) < g1V — Vil + 5106~ Zil} + Do~ Vi, Vi — X + dranky (V). (€2)
Hence, for any 4 € (0, 1), we obtain that
AE(Vit1, Xit1) < 7Hyk+1 - Vil + *Hyk: — Xp[f + Vi1 — Vi, Vi — Xi) + Aranky (YVis1). (C.3)
The first line in (23) can be rewritten as
Vior € arggn{o |9 - Vit uV - X0l + Arank, (D)} (C4)

Expanding the quadratic term in (C.4) and replacing &Yy — X% as 3|Vi — X[ (will not alter the minimizer)
yield that

1 1
Vi1 € argm;n ZHJJ — ka% + §\|yk — Xk||% +{Y = Vi, Vi — Xy + Arank, (V). (C.5)

Substituting Y41 and Yy, into the objective function of (C.5), and by (C.3), we conclude that

E(Yi+1, Xi+1) < E(Yk, X). (C.6)

Therefore, the sequence {F (Y, X)} is monotonically decreasing and hence converges. Moreover, by (C.2), (C.3)
and (C.6), we get that

2uX
Vi = Vil < 72 (B Xi) = Bk, X)) (S8



This implies that klim [Vi+1 — Yi|r = 0. By the second subproblem of (23), X' is essentially the projection of
—00

YVi.+1 on the feasible set
C ={X | Pa(X) = Pa(M)}.

The nonexpansiveness of the projection operator implies klim [X ki1 — Xklr = 0.
—00
The result of klim |Vi+1—Yi|r = 0implies that there exists a number K > 0 such that | YVi+1 —Villr < v2Au
—00
for all £ > K. By Item (2) of Lemma the rank, (Vi) keeps invariant for all k£ > K. O

C.1 Note
If we choose (Yo, X () be a feasible point of (22) and bounded, by (C.7) we have that

4
Z 1 Vri1 = Vills < +0,

k=1

which implies that klim |Vri+1 — Villr = 0 and the sequence {1} is bounded. Moreover, the sequence { X} is also
—00
bounded.

D Image Recovery

We show the detailed PSNR values of the standard images with different sampling rates in this appendix.

Figure 1: Standard images: airplane, baboon, barbara, boats, butterfly, house, lena, peppers (from left to right).

Table 1: Comparison of PSNR on the standard images at sampling rate p = 0.2.

Method airplane baboon Dbarbara boats butterfly house lena  peppers average

HaLRTC 21.27 19.12 21.02  21.06 16.94 2429 21.76  20.51 20.75
T-SVD 21.51 18.58 2090 21.66 17.27 2443 21.64 1947 20.68

TNN 23.21 19.68 21.53 2290 19.69 25.70 2242  21.03 22.02
TNN-DCT  23.23 19.84 21.58  23.00 19.76  26.24 2254  21.19 22.17
Ours 23.99 20.13 2233 2372 2095 2736 2351  22.06 23.01

Table 2: Comparison of PSNR on the standard images at sampling rate p = 0.4.

Method airplane  baboon barbara boats butterfly house lena  peppers average

HaLRTC 25.64 21.91 2530 2524  22.15 26.69 26.11  25.26 24.78
T-SVD 26.04 21.84 25.65 26.71 23.27 30.04 2634 2462 25.56

TNN 27.61 23.22 26.00 27.46  25.68 30.72  27.28  25.25 26.65
TNN-DCT  27.70 23.27 26.06 27.57 2590 3130 2743 2545 26.83
Ours 28.89 23.82 27.20 28.95  28.28  32.68 29.08 26.72 28.20




Table 3: Comparison of PSNR on the standard images at sampling rate p = 0.6.

Method airplane  baboon barbara boats butterfly house lena  peppers average

HaLRTC 30.05 25.03 29.40  29.75 27.50 3423 3036  29.85 29.52
T-SVD 30.90 25.39 30.40 32.00 3045 3459 3095 29.15 30.48

TNN 31.88 26.94 30.33 3243 32.16 3481 31.88 2941 31.23
TNN-DCT  31.94 26.93 3042 32.61 32.72 3547 3207  29.66 31.48
Ours 32.72 27.87 3183 3484 3591 36.71 34.17 31.01 33.13

Table 4: Comparison of PSNR on the standard images at sampling rate p = 0.8.

Method airplane  baboon barbara boats butterfly house lena  peppers average

HaLRTC 36.06 29.61 3470 3595 34.65 39.21 36.00 3543 35.20
T-SVD 37.12 30.41 36.25 38.69 4040 39.75 37.00 34.99 36.83

TNN 3677 3206 3609 3877 3995 3972 37.69 3437 3692

TNN-DCT 3676 3197 3615 3901 41.16 4032 37.87 3467  37.24

Ours 3721 3330 3851 4150 4433 4124 4023 3638 39.09
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