
Appendix

A Proof of Theorem 3.1

Proof. Let X “ U ˚L S ˚L VT be the t-SVD of X . By the orthogonality of L and the definition of tensor average
rank, the problem (20) is equivalent to

DλpX q P arg min
Y

1
2λ}Y ´X }2F ` rankapYq (A.1)

P arg min
Y

1
2λ}Ȳ ´ X̄ }2F ` rankapȲq (A.2)

“ arg min
Y

n3
ÿ

i“1
p
1
2}X̄

piq ´ Ȳ piq}2F ` λrankpȲ piqqq, (A.3)

which is separable to each frontal slice in the transform domain. By the Corollary 2.2 in [1], we get that the i-th frontal
slice of DλpX q solves the i-th subproblem of (A.3) . Hence, DλpX q solves problem (20).

B Proof of Proposition 3.1

Proof. Let X “ U ˚L S ˚L VT be the t-SVD of X . By Theorem 3.1, the right side of (21) equals to

1
2λ}DλpX q ´X }2F ` rankapDλpX qq. (B.1)

Substituting the explicit form of DλpX q in (18) into (B.1) and by the orthogonality of U and V , (B.1) can be simplified
as

1
2λ

ÿ

pi,kqRΛ
S̄2
iik ` 7Λ, (B.2)

where Λ is the set defined by
Λ “ tpi, kq|S̄iik ą

?
2λu,

and 7Λ denotes its cardinality. We can prove (21) by directly verifying the definition of ΦλpX q in (15). Moreover, if

λ ď
min
i,k

S̄2
iik

2 , we get that DλpX q “ X . Hence, ΦλpX q “ rankapX q.

The following notation is needed for presenting the convergence analysis. For a tensor X P Rn1ˆn2ˆn3 , let
σpX̄piqq denote the singular value vector of the i-th frontal slice of X̄ “ LpX q. We denote by σjpX̄piqq the j-th
component of σpX̄piqq with 1 ď j ď minpn1, n2q.

Lemma B.1. Let tYku be generated by (23), then

(1) Either σjpȲ
piq
k q ě

?
2λµ or σjpȲ

piq
k q “ 0, for all 1 ď i ď n3, 1 ď j ď minpn1, n2q,

(2) }Yk`1 ´Yk}F ě
?

2λµ, if rankapYk`1q ‰ rankapYkq.
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Proof. Item (1) follows immediately from the closed-form solution of tYku in (23). Suppose that rankapYk`1q ‰

rankapYkq for some k, by Item (1), there exist at least one i and one j such that either σjpȲ
piq
k`1q ě

?
2λµ, σjpȲ

piq
k q “

0 or σjpȲ
piq
k`1q “ 0, σjpȲ

piq
k q ě

?
2λµ. For both cases, we have that

}σpȲ
piq
k`1q ´ σpȲ

piq
k q}2 ě

a

2λµ.

Moreover, for any 1 ď i ď n3, we know from Corollary 7.1.4.3 of [2] that

}Ȳ
piq
k`1 ´ Ȳ

piq
k }F ě }σpȲ

piq
k`1q ´ σpȲ

piq
k q}2.

The above two inequalities and the orthogonality of L yield Item (2).

C Proof of Theorem 3.2
Proof. Denote

EpY ,X q “ 1
2λ}Y ´X }2F ` rankapYq.

By the second subproblem in (23), we conclude that

}Yk`1 ´X k`1}
2
F ď }Yk`1 ´X k}

2
F.

Then we have that

λEpYk`1,X k`1q “
1
2}Yk`1 ´X k`1}

2
F ` λrankapYk`1q

ď
1
2}Yk`1 ´X k}

2
F ` λrankapYk`1q. (C.1)

Expanding the term }Yk`1 ´X k}
2
F yields

λEpYk`1,X k`1q ď
1
2}Yk`1 ´Yk}

2
F `

1
2}Yk ´X k}

2
F ` xYk`1 ´Yk,Yk ´X ky ` λrankapYk`1q. (C.2)

Hence, for any µ P p0, 1q, we obtain that

λEpYk`1,X k`1q ď
1

2µ}Yk`1 ´Yk}
2
F `

1
2}Yk ´X k}

2
F ` xYk`1 ´Yk,Yk ´X ky ` λrankapYk`1q. (C.3)

The first line in (23) can be rewritten as

Yk`1 P arg min
Y
t

1
2µ}Y ´Yk ` µpYk ´X kq}

2
F ` λrankapYqu. (C.4)

Expanding the quadratic term in (C.4) and replacing µ
2 }Yk ´X k}

2
F as 1

2}Yk ´X k}
2
F (will not alter the minimizer)

yield that

Yk`1 P arg min
Y

1
2µ}Y ´Yk}

2
F `

1
2}Yk ´X k}

2
F ` xY ´Yk,Yk ´X ky ` λrankapYq. (C.5)

Substituting Yk`1 and Yk into the objective function of (C.5), and by (C.3), we conclude that

EpYk`1,X k`1q ď EpYk,X kq. (C.6)

Therefore, the sequence tEpYk,X kqu is monotonically decreasing and hence converges. Moreover, by (C.2), (C.3)
and (C.6), we get that

}Yk`1 ´Yk}
2
F ď

2µλ
1´ µ pEpYk,X kq ´ EpYk`1,X k`1qq. (C.7)
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This implies that lim
kÑ8

}Yk`1 ´ Yk}F “ 0. By the second subproblem of (23), X k`1 is essentially the projection of

Yk`1 on the feasible set
C “ tX | PΩpX q “ PΩpMqu.

The nonexpansiveness of the projection operator implies lim
kÑ8

}X k`1 ´X k}F “ 0.

The result of lim
kÑ8

}Yk`1´Yk}F “ 0 implies that there exists a numberK ą 0 such that }Yk`1´Yk}F ă
?

2λµ
for all k ą K. By Item (2) of Lemma B.1, the rankapYkq keeps invariant for all k ą K.

C.1 Note
If we choose pY0,X 0q be a feasible point of (22) and bounded, by (C.7) we have that

`8
ÿ

k“1
}Yk`1 ´Yk}

2
F ă `8,

which implies that lim
kÑ8

}Yk`1´Yk}F “ 0 and the sequence tYku is bounded. Moreover, the sequence tX ku is also

bounded.

D Image Recovery
We show the detailed PSNR values of the standard images with different sampling rates in this appendix.

Figure 1: Standard images: airplane, baboon, barbara, boats, butterfly, house, lena, peppers (from left to right).

Table 1: Comparison of PSNR on the standard images at sampling rate p “ 0.2.

Method airplane baboon barbara boats butterfly house lena peppers average

HaLRTC 21.27 19.12 21.02 21.06 16.94 24.29 21.76 20.51 20.75
T-SVD 21.51 18.58 20.90 21.66 17.27 24.43 21.64 19.47 20.68
TNN 23.21 19.68 21.53 22.90 19.69 25.70 22.42 21.03 22.02

TNN-DCT 23.23 19.84 21.58 23.00 19.76 26.24 22.54 21.19 22.17
Ours 23.99 20.13 22.33 23.72 20.95 27.36 23.51 22.06 23.01

Table 2: Comparison of PSNR on the standard images at sampling rate p “ 0.4.

Method airplane baboon barbara boats butterfly house lena peppers average

HaLRTC 25.64 21.91 25.30 25.24 22.15 26.69 26.11 25.26 24.78
T-SVD 26.04 21.84 25.65 26.71 23.27 30.04 26.34 24.62 25.56
TNN 27.61 23.22 26.00 27.46 25.68 30.72 27.28 25.25 26.65

TNN-DCT 27.70 23.27 26.06 27.57 25.90 31.30 27.43 25.45 26.83
Ours 28.89 23.82 27.20 28.95 28.28 32.68 29.08 26.72 28.20
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Table 3: Comparison of PSNR on the standard images at sampling rate p “ 0.6.

Method airplane baboon barbara boats butterfly house lena peppers average

HaLRTC 30.05 25.03 29.40 29.75 27.50 34.23 30.36 29.85 29.52
T-SVD 30.90 25.39 30.40 32.00 30.45 34.59 30.95 29.15 30.48
TNN 31.88 26.94 30.33 32.43 32.16 34.81 31.88 29.41 31.23

TNN-DCT 31.94 26.93 30.42 32.61 32.72 35.47 32.07 29.66 31.48
Ours 32.72 27.87 31.83 34.84 35.91 36.71 34.17 31.01 33.13

Table 4: Comparison of PSNR on the standard images at sampling rate p “ 0.8.

Method airplane baboon barbara boats butterfly house lena peppers average

HaLRTC 36.06 29.61 34.70 35.95 34.65 39.21 36.00 35.43 35.20
T-SVD 37.12 30.41 36.25 38.69 40.40 39.75 37.00 34.99 36.83
TNN 36.77 32.06 36.09 38.77 39.95 39.72 37.69 34.37 36.92

TNN-DCT 36.76 31.97 36.15 39.01 41.16 40.32 37.87 34.67 37.24
Ours 37.21 33.30 38.51 41.50 44.33 41.24 40.23 36.38 39.09
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