
Supplementary Material for “Multi-Expert Adversarial Attack Detection in
Person Re-identification Using Context Inconsistency”

Xueping Wang1,2, Shasha Li3, Min Liu *1,2, Yaonan Wang1,2 and Amit K. Roy-Chowdhury3

1College of Electrical and Information Engineering, Hunan University, China
2National Engineering Laboratory for Robot Visual Perception and Control Technology, China

3University of California, Riverside

In the supplementary material, 1) we provide the recog-
nition performance of person ReID models that we used as
the experts in MEAAD on the Market1501 and DukeMTMC-
ReID datasets. 2) we give more details for the choices of
the expert models. 3) we show the detection performance
of the proposed adversarial detection method with different
number of expert models on the DukeMTMC-ReID dataset.
4) we report the detection performance of MEAAD on the
DukeMTMC-ReID dataset with/without using the attack
target model as one of the expert models. 5) we explore the
detection performance of MEAAD on the adaptive CW attack
which is aware of the defense scheme and has white-box
access to the expert models used in MEAAD. 6) we also pro-
pose another adaptive attack method, named multi-model
targeted attack, and evaluate MEAAD’s robustness towards
it. 7) we present the implementation details of the three
state-of-the-art adversarial attack detection baseline meth-
ods: Local Intrinsic Dimensionality (LID) [10], Deep k-
Nearest Neighbors (DkNN) [11] and Spatial Rich Model
(SRM) [9] which we used in the main paper.

1. ReID performance of the expert models
To create an expert system with high heterogeneity, per-

son ReID models with different network architectures are
used during evaluation. Due to their superior performance
on the Market1501 dataset, PCB [13], AlignedReID (AR)
[14], HACNN [8], LSRO [15] and Mudeep (MD) [12] are
the five candidates to serve as expert models for evalua-
tion on the Market1501 dataset, and similarly, AlignedReID
(AR) [14], LSRO [15], HHL [16], CamStyle (CS) [17] and
SPGAN [5] are the five candidates to serve as expert mod-
els for evaluation on the DukeMTMC-ReID dataset. For all
the eight models, we use the author-released models with
trained parameters. The ReID performance of these meth-
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Table 1. Recognition performance with different expert ReID
models on the Market1501 and DukeMTMC-ReID dataset.
Methods Rank-1 Rank-10 mAP
Performance on Market1501
PCB [13] 88.6 97.3 70.7
AlignedReID [14] 91.8 98.1 79.1
HACNN [8] 90.6 97.4 75.3
LSRO [15] 89.9 97.4 77.2
Mudeep [12] 73.0 93.1 49.9
Performance on DukeMTMC-ReID
AlignedReID [14] 72.0 89.5 55.2
LSRO [15] 72.0 89.5 55.2
HHL [16] 71.4 87.7 51.8
CamStyle (CS) [17] 76.5 90.0 58.1
SPGAN [5] 73.6 88.9 54.6

ods on both datasets is presented in Table 1. The common
cumulative matching characteristic (CMC) and the mean
average precision (mAP) metrics are utilized to demonstrate
the performance of each method.

2. Choices of expert models

From Tab. 1, it can be seen that the recognition per-
formance of different expert models is various, e.g. there
is 18.8% rank-1 accuracy difference between AlignedReID
[14] model and Mudeep [12]. MEAAD is based on the con-
text features which are extracted from the embedding fea-
tures of the query samples and the corresponding support
samples, so poor ReID models may affect the adversarial
attack detection performance. Therefore, in this section,
we provide more analysis on how the ReID performance
of the expert models affect the adversarial attack detection
performance. We do evaluation on the Market1501 dataset.
Deep Mis-Ranking attack method is used to generate the
perturbations against the target attack model (AlignedReID
model). The results can be found in Tab. 2. It can be seen



Table 2. Adversarial attack detection performance with different
expert models on the Market1501 dataset. * indicates the attack
target model known to the attackers.

Expert models Acc AUC F1
AR* 95.2 99.1 95.5
AR*+Mudeep 93.2 99.4 93.7
AR*+LSRO 97.5 99.7 97.6
AR*+PCB 97.8 99.7 97.9
AR*+PCB+LSRO 98.4 99.8 98.4
AR*+HACNN+LSRO 98.2 99.8 98.2
AR*+PCB+HACNN 98.2 99.7 98.3
AR*+LSRO+Mudeep 96.4 99.7 96.5
AR*+HACNN+Mudeep 97.5 99.7 97.6
AR*+PCB+LSRO+HACNN 98.5 99.8 98.6
AR*+PCB+LSRO+Mudeep 97.9 99.8 97.9
AR*+LSRO+HACNN+Mudeep 98.2 99.8 98.2
AR*+PCB+HACNN+Mudeep 98.3 99.7 98.3
AR*+PCB+LSRO+HACNN+Mudeep 98.5 99.8 98.6

that when we use two ReID models as the experts, the ad-
versarial attack detection performance will be affected by
the poor model, i.e., 4.6% detection accuracy drops when
using Mudeep as one of the experts. However, we find with
the increase of the expert models, the side effect caused by
the poor experts will be reduced gradually, such as 2.0%
decreasement when using three experts and 0.6% decrease-
ment for four experts. We conclude that 1) it is better to
use ReID models with higher ReID performance for attack
detection; 2) MEAAD is robust against poor expert models
when using multiple ReID models as the experts.

3. Detection with different number of experts
In this section, we report the detection performance of

the proposed defense method on DukeMTMC-ReID with
different number of expert models. We get the same con-
clusion as the results on the Market1501 dataset (Tab. 2
in the main paper): the performance is better when we
use more expert models because more expert models bring
more context information and thus the extracted context
features are more discriminative between benign and per-
turbed samples. As shown in Tab. 3, when using only the
attack target model (LSRO), we still get very good perfor-
mance: F1 score is 93.2%. Combining five expert mod-
els (LSRO+AR+SPGAN+HHL+CS), we achieve the best
detection performance: 95.3% detection accuracy on the
DukeMTMC-ReID dataset.

4. Detection with/without the target model
In this section, we report the detection performance of

MEAAD with/without using attack target model as one of
the experts on DukeMTMC-ReID. The results are shown in
Tab. 4. We observe that the F1 score of using the attack
target model (LSRO) as the only expert model is 93.2%,

Table 3. Adversarial attack detection performance with different
number of expert models on the DukeMTMC-ReID dataset. * in-
dicates the attack target model known to the attackers.

Expert models Acc AUC F1
LSRO* 92.6 98.4 93.2
LSRO*+AR 93.2 99.1 93.5
LSRO*+AR+SPGAN 94.3 99.2 94.5
LSRO*+AR+SPGAN+HHL 95.3 99.2 95.5
LSRO*+AR+SPGAN+HHL+CS 95.3 99.2 95.5

Table 4. Adversarial attack detection performance with/without
using the attack target model as one of the expert models on the
DukeMTMC-ReID dataset. * indicates the attack target model.

Expert models Acc AUC F1
LSRO* 92.6 98.4 93.2
LSRO*+AR+SPGAN 94.3 99.2 94.5
AR 88.6 98.8 89.7
AR+SPGAN 89.7 98.2 90.4
AR+SPGAN+CS 93.0 98.8 93.4
AR+SPGAN+CS+HHL 93.0 98.7 93.3

Table 5. Adversarial attack detection performance on the adaptive
CW attack on the Market1501 dataset.

Attack method Acc AUC F1
Non-adaptive CW attack 96.1 98.7 96.2
Adaptive CW with single model 94.5 97.6 94.9
Adaptive CW with all models 92.6 95.7 92.8

which is very close to 93.3% when using other four expert
models (AR+SPGAN+CS+HHL). This indicates that it is
beneficial to include the attack target model as one of the
expert models.

5. Adaptive CW attack against MEAAD
To further evaluate the proposed adversarial detection

method against adaptive attacks where the attacker is as-
sumed to be aware of the consistency check and even have
white-box access to all the expert models used in MEAAD,
we extend the adaptive attack strategy, adaptive CW attack
proposed in [2], to attack MEAAD, and evaluate MEAAD’s
detection performance on the extended adaptive CW attack.
Specifically, instead of minimizing density to evade kernel
density-based adversarial detectors, here we modify the last
term of the adaptive CW loss related to context consistency
check used in MEAAD as below:

minimize||x−xadv||22+α·(lcw(xadv)+l∗(MEAAD(xadv)))
(1)

where x is a benign query sample to be attacked and xadv is
its corresponding perturbed version. α is a constant balanc-
ing between the amount of perturbation and the adversarial
strength. lcw(xadv) is the original adversarial loss term used
in [3, 2] to make the adversarial example classified to the
target class. MEAAD(xadv) is the sum over the three kinds



of context affinity and l∗(MEAAD(xadv)) is introduced to
maximize the affinity defined in MEAAD. The rationale is
that adversarial examples have lower context affinity than
benign examples and thus we need to increase the affinity
to evade MEAAD. We define it as below:

l∗(MEAAD(xadv)) = −
∑

(Aqs +Ass +Ace) (2)

For testing, LSRO is used as the attack target ReID model,
and LSRO and PCB are the expert models. The results are
in Tab. 5. We test the proposed method under two adaptive-
attack scenarios. In the first scenario, we assume the at-
tacker is aware of our context consistency-based defense
scheme and only the attack target model is white-box to
the attacker, i.e. l∗(MEAAD(xadv)) = −

∑
(Aqs + Ass) is

defined with the query-support affinity and support-support
affinity. We observe that the proposed the adaptive CW at-
tack only decreases the detection accuracy of MEAAD by
1.6%. In the second scenario, we assume the attacker knows
our defense strategy and has white-box access to all the
ReID models used in MEAAD, i.e., l∗(MEAAD(xadv)) is de-
fined with all the three affinities. As shown Tab. 5, the de-
tection accuracy drops by 3.5% compared to that against
the original non-adaptive CW attack. Therefore, we may
conclude that our MEAAD defense algorithm is robust to the
adaptive CW attack.

6. Multi-model targeted attack against MEAAD
As shown in Fig. 1 in the main paper, the retrieval re-

sults of the non-targeted attack are messy and not consis-
tent across different expert models, and thus such attacks
are detected by MEAAD. If we assume all expert models
are white-box to the attacker, the attacker could do targeted
attack against all expert models simultaneously. In other
words, this adaptive attack generates adversarial examples
that fool all the ReID models used in MEAAD (both the tar-
get model and the expert models) to retrieve the same wrong
identity and thus context is more consistent. We name this
attack method as multi-model targeted attack. We extend
the adversarial metric attack in [1] to a multi-model targeted
attack as below. Given expert models Fi(·), i = 1, 2, ..., N ,
N is the number of expert models used in MEAAD, we solve
the following optimization problem to generate adversarial
query examples.

minimize
x

1

N

∑
i

||Fi(x)− Fi(gt)||22 (3)

where x is a query image to be attacked and gt is the gallery
images with the pre-determined target person identity. Fol-
lowing the settings in [1], we use the Euclidean distance as
the distance metric for attack. For testing, LSRO and PCB
are used as the expert models. We use MI-FGSM [6] as the

Table 6. Adversarial attack detection performance on the multi-
model targeted attack on the Market1501 dataset.

C = 5 C = 6 C = 7 C = 8

# attacked samples 211 154 114 76

attacking method to generate the adversarial query exam-
ples on the Market1501 dataset.

A successful multi-model targeted attack is defined as at
least C samples of the targeted person identity are retrieved
in top-15 retrievals by each expert model in MEAAD. How-
ever, aligned with previous works [18], we find that targeted
attack against multiple models is hard. As shown in Tab. 6,
only 211 (6.2%) such adversarial examples are found from
all the 3,368 tests when C = 5. We evaluate MEAAD’s de-
tection performance against such 211 adversarial examples
and the detection accuracy is 88.6%. In summary, firstly,
such adaptive adversarial examples do not always exist; sec-
ond, MEAAD is still able to detect such examples with decent
performance.

7. Implementations of the LID, DkNN and
SRM

In this paper, we compare the proposed method with
three state-of-the-art adversarial attack detection methods,
Local Intrinsic Dimensionality (LID)[10], Deep k-Nearest
Neighbors (DkNN) [11] and Spatial Rich Model (SRM)
[7, 9] . In this section, we demonstrate the implementa-
tion details of these three methods for adversarial examples
detection in person ReID.

The LID associated with each query example (either be-
nign or perturbed) is estimated from its support set (top-
K retrievals). For any new unknown test query example,
a support set consisting its top-15 retrieved samples is used
to estimate LID. The outputs of the feature embedding layer
are used to calculate an LID estimate. They are then used as
feature values to train a classifier (logistic regression (LR)
is used, like [10]). Test examples are then classified by
the LID-based classifier to either the positive (perturbed) or
negative (benign) class by means of its LID-based feature
values.

The DkNN algorithm is proposed to better estimate the
prediction, confidence, and credibility for a given test sam-
ple, in which a test query input is compared to its top-15
retrievals (support set) according to the distance that sepa-
rates them in the representations. Following the settings in
[4], we convert the original DkNN algorithm [11] to an ad-
versarial attack detection method. This is done by collecting
the empirical p-values calculated in the DkNN strategy and
formulating a reactive adversarial detector by training a LR
model on these features. Note that since the DkNN method
requires a calibration set, we randomly select 10% of the
query examples for calibrating it and present all results by
features from the embedding space alone.



SRM [7, 9] can effectively detect modifications caused
by adversarial attack via modeling the dependence between
adjacent pixels in natural images. Following the same set-
tings in [9], 45 pixel predictors from the pixel’s immedi-
ate neighborhood are used to obtain a residual which is an
estimate of the image noise component. Then, we extract
34,671 steganalysis features and utilize them to train a clas-
sifier to distinguish the perturbed samples from the benign
ones.
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