
1. Appendix A.
Effect of multi-stage training during rectifying process. In our target-guided uncertainty rectifying, we refine high-

uncertain classes using multiple stages. As shown in Table 1, we provide the performance of different refinery stages for the
GTA5→ Cityscapes task. We can observe that the refinery stage can improve the performance with a large margin. However,
when we refine the model on the 5th stage, the performance drops the mIoU by 0.9 due to the over-fitting.

1 2 3 4 5
mIoU 46.1 46.7 47.4 48.8 47.9

Table 1. The performance of different refinery stages. Here we only report the performance for the GTA5 → Cityscapes task.

The effect of hyper-parameters α and µ during soft-balanace sampling . In our soft-balance sampling strategy, we use
α and µ to smooth the shape of sampling probability. To testify the influence of these parameters, we conduct experiments
on GTA5→ Cityscapes, and we only report the performance for the 1st refinery stage.

α µ mIoU
30 0.07 44.6
40 0.05 44.9
60 0.03 45.8
80 0.02 46.1

Table 2. The influence of various hyper-parameters. We report the performance for the 1st refinery stage in the GTA5 → Ciyscapes task.

Explanation for pseudo labels assignment. In our implementation of uncertainty-aware pseudo labels assignment, we
assume that the input pixel-level entropy follows a bimodal distribution, estimated by a Gaussian Mixture Model (GMM).
Precisely, the left mode corresponds to pixels with correctly predicted labels, and the right mode to pixels with incorrectly
predicted labels. Intuitively, this assumption can be easily violated in practice when multiple entropy modes occur. In
practice, within a single image and a single class, the distribution is relatively simple, and the multi-modes problem can be
generally avoided. We also experimentally confirmed this two modes assumption in Fig. 1. This qualitative performance is
measured on the dataset GTA5→ Cityscapes, whereas the other dataset shows similar results.

Figure 1. The distributions of positive (blue) and negative (orange) predictions on the whole 19 classes for a random image.



2. Appendix B. Algorithm
The training produce of the proposed UncerDA is summarized in Algorithm 1, which consists two stages. The first stage

is related to target-guided uncertainty rectifying, which enhances feature alignment during adversarial adaptation process. In
the second stage, we use uncertainty-aware pseudo labels assignment strategy to select positive pseudo labels and refine the
model on the target data. For detailed equations and loss functions, please refer to main paper.

Algorithm 1: UncerDA
Data: training dataset: (Xs,Ys,Xt); soft-balance parameters: λ, α, µ; uncertainty class number: k;
Result: the output model Fθf

1 initialization;
2 Warmup: Fθ ← (Xs,Ys,Xt) according to [31];
3

4 for stage← 1 to s do
5 Generate hard pseudo labels for the target data: Ŷt ← Fθf (Xt; θf );
6 for c← 0 to C do
7 Calculate category-level entropy for the target dataset IcXt

;
8 end
9 Sort IcXt

on the whole C classes and select top-k classes as a subset Sk ;
10 Calculate instance-level soft-balance sampling probability for the source data p̂i(xs);
11 for m← 0 to epochs do
12 for i← 0 to len(Xt) do
13 Get target images x(i)

t according to random sampling strategy;
14 Get source images x(i)

s according to soft-balance sampling probability p̂i(xs);
15 Train the model Fθf ← (x

(i)
s , y

(i)
s , x

(i)
t ; θf ) using the adversarial adaptation (AA) method according to

[31];
16 end
17 end
18 end
19

20 P is a set of positive prediction samples; N is a set of negative prediction samples;
21 Generate hard pseudo labels for the target data: Ŷt ← Fθf (Xt; θf );
22 for i← 0 to len(Xt) do
23 for c← 0 to C do
24 Calculate pixel-level entropy Ic

x
(i)
t

for the target image x
(i)
t ;

25 B,F ← GMM(I (i)xt , 2) {B,F : Probabilities of two Gaussians for I (i)xt };
26 P,N ← SeparateCategoryLevelEntropy(I (i)xt ,B,F) {Separate entropy according to Fig.4} ;
27 Get positive pseudo labels Ŷ(p)

t ← Ŷt ∩ P , and negative predictions N are ignored;
28 end
29 end
30 Train the model Fθf ← (Xt, Ŷ(p)

t ; θf ) using the self-training (ST) method.


