
A. Implementation details

Completion pre-training Previous point completion models [10, 60, 48, 51] all use an ”encoder-decoder” architecture.
The encoder maps a partial point cloud to a vector of a fixed dimension, and the decoder reconstructs the full shape.

In the OcCo experiments, we exclude the last few MLPs of PointNet and DGCNN, and use the remaining architecture as
the encoder to map a partial point cloud into a 1024-dimensional vector. We adapt the folding-based decoder design from
PCN, which is a two-stage point cloud generator that generates a coarse and a fine-grained output point cloud (Ycoarse, Yfine)
for each input feature. We sketch the network structures of PCN encoder and output layers for downstream tasks in Figure 7.
We removed all the batch normalisation in the folding-based decoder since we find they bring negative effects in the com-
pletion process in terms of loss and convergence rate, this has been reported in image generations [34]. Also, we find L2
normalisation in the Adam optimiser is undesirable for completion training but brings improvements for the downstream
fine-tuning tasks.

n × 3

In
pu

tP
oi
nt
s Conv1D

(128)

ReLU

n × 128

Conv1D
(256)

n × 256

1 × 256

n × 512

MaxPool Tile

…

Conv1D (512)
ReLU [Feat 4]

Conv1D (1024) [Feat5]
MaxPool

1 × 1024

1024

PCN Encoder

MLP
(512, 256, k)

SoftMax
𝑘 Scores

CLS Output Layer

Feat 1 Feat 2 Feat 3 Global

G
lo

ba
l

Global
Global

Global
Global

Feat 3 Feat 4 Feat 5

PartSeg Output Layer

Feat 1

…

Feat 2

Global
Global

Global
Global

…

n × 1280

Conv1D (512) ReLU
Conv1D (256) ReLU

Conv1D (128) ReLU
Conv1D (k) Softmax

𝑛 × 𝑘 Scores

SemSeg Output Layer

Conv1D (512) ReLU
Conv1D (256) ReLU

Conv1D (128) ReLU
Conv1D (k) Softmaxn × 5264

One Hot 𝑛 × 𝑘 Scores

Figure 7: Encoder and Output Layers of PCN

We compare the occluded datasets based on ModelNet40 and ShapeNet8 for the OcCo pre-training. We construct the
ModelNet Occluded using the methods described in Section 3 and for ShapeNet Occluded we directly use the data provided
in the PCN, whose generation method are similar but not exactly the same with ours. Basic statistics of these two datasets
are reported in Table 8.

Table 8: Statistics of occluded datasets for OcCo pre-training

Name # of Class # of Object # of Views # of Points/Object
ShapeNet Occluded (PCN and follow-ups) 8 30974 8 1045

ModelNet Occluded (OcCo) 40 12304 10 20085

By visualising the objects from the both datasets in Figure 8 and Figure 9, we show that our generated occluded shapes
are more naturalistic and closer to real collected data. We believe this realism will be beneficial for the pre-training. We then
test our hypothesis by pre-training models on one of the dataset, and fine tune them on the other. We report these results in
Table 9. Clearly we see that the OcCo models pre-trained on ShapeNet Occluded do not perform as well as the ones pre-
trained on ModelNet Occluded in most cases. Therefore we choose our generated ModelNet Occluded rather than ShapeNet
Occlude [60, 48, 51] used in for the pre-training.

Figure 8: Examples from ShapeNet Occluded which fail to depict the underlying object shapes

Figure 9: Examples of our generated self-occluded objects from ModelNet.

Table 9: Performance of OcCo pre-trained models with different pre-trained datasets

OcCo Settings Classification Accuracy

Encoder Pre-Trained Dataset ModelNet Occ. ShapeNet Occ.

PointNet ShapeNet Occ. 81.0 94.1
ModelNet Occ. 85.6 95.0

PCN ShapeNet Occ. 81.6 94.4
ModelNet Occ. 85.1 95.1

DGCNN ShapeNet Occ. 86.7 94.5
ModelNet Occ. 89.1 95.1

Re-Implementation details of ”Jigsaw” pre-training methods We describe how we reproduce the ’Jigsaw’ pre-training
methods from [42]. Following their description, we first separate the objects/chopped indoor scenes into 33 = 27 small cubes
and assign each point a label indicting which small cube it belongs to. We then shuffle all the small cubes, and train a model
to make a prediction for each point. We reformulate this task as a 27-class semantic segmentation, for the details on the data
generation and model training, please refer to our released code.

B. Ablations

As pointed out by the reviewers, we agree adding more runs will help. To help judge significance, we have ran 10 runs for
three settings2 and computed p-values via t-tests (unpaired, unequal variances) between OcCo and baselines (i.e., Jigsaw or
random). We observe that all p-values are below the conventional significance threshold α=0.05 (the family-wise error rate
is also, using Holm-Bonferroni).

As suggested by the reviewers, we ran ablations varying the number of object views and categories in Tables 11 and 12.
We use Setting (1) from Table 10 as it is the fastest to run (∗ indicates few-shot result in main paper).

2We chose settings that have low FLOPs across tasks and encoders.

Table 10: P-values for unpaired (unequal variance) t-tests between OcCo and baselines (across 10 runs). Setting: (1) Few-Shot
(10-way 10-shot), ScanObjectNN, DGCNN; (2) Classification, ScanNet, PCN; (3) Segmentation, SensatUrban, PointNet.

Setting OcCo vs. Rand OcCo vs. Jigsaw

(1) 10−7 10−7

(2) 0.02 0.05
(3) 0.006 0.02

Table 11: Ablation: number of views (5 runs), ∗=main paper result.

of Views 1 5 10* 20

PointNet 44.7±1.8 53.6±1.2 54.9±1.2 54.8±1.0
DGCNN 42.7±2.1 56.9±1.4 56.8±1.5 57.0±1.6

Table 12: Ablation: number of object categories (5 runs)

of Categories 1 10 40*

PointNet 41.1±1.2 52.2±1.5 54.9±1.2
DGCNN 37.9±3.8 44.8±2.9 56.8±1.5

C. More results
3D object classification with Linear SVMs We follow the similar procedures from [1, 14, 42, 54, 59], to train a linear
Support Vector Machine (SVM) to examine the generalisation of OcCo encoders that are pre-trained on the occluded objects
from ModelNet40. For all six classification datasets, we fit a linear SVM on the output 1024-dimensional embeddings of the
train split and evaluate it on the test split. Since [42] have already proven their methods are better than the prior, here we
only systematically compare with theirs. We report the results3 in Table 13, we can see that all OcCo models achieve superior
results compared to the randomly-initialised counterparts, demonstrating that OcCo pre-training helps the generalisation both
in-domain and cross-domain.

Table 13: linear SVM on the output embeddings from random, Jigsaw and OcCo initialised encoders

Dataset PointNet PCN DGCNN
Rand Jigsaw OcCo Rand Jigsaw OcCo Rand Jigsaw OcCo

ShapeNet10 91.3 91.1 93.9 88.5 91.8 94.6 90.6 91.5 94.5
ModelNet40 70.6 87.5 88.7 60.9 73.1 88.0 66.0 84.9 89.2
ShapeNet Oc 79.1 86.1 91.1 72.0 87.9 90.5 78.3 87.8 91.6
ModelNet Oc 65.2 70.3 80.2 55.3 65.6 83.3 60.3 72.8 82.2

ScanNet10 64.8 64.1 67.7 62.3 66.3 75.5 61.2 69.4 71.2
ScanObjectNN 45.9 55.2 69.5 39.9 49.7 72.3 43.2 59.5 78.3

Few-shot learning We use the same setting and train/test split as cTree [44], and report the mean and standard deviation
across on 10 runs. The top half of the table reports results for eight randomly initialised point cloud models, while the
bottom-half reports results on two models across three pre-training methods. We bold the best results (and those whose
standard deviation overlaps the mean of the best result). It is worth mentioning cTree [44] pre-trained the encoders on both
datasets before fine tuning, while we only pre-trained once on ModelNet40. The results show that models pre-trained with
OcCo either outperform or have standard deviations that overlap with the best method in 7 out of 8 settings.

3In our implementation, we also provide an alternative to use grid search to find the optimal set of parameters for SVM with a Radial Basis Function
(RBF) kernel. In this setting, all the OcCo pre-trained models have outperformed the random and Jigsaw initialised ones by a large margin as well.

Table 14: More results on few-shot learning.

Baseline
ModelNet40 Sydney10

5-way 10-way 5-way 10-way
10-shot 20-shot 10-shot 20-shot 10-shot 20-shot 10-shot 20-shot

3D-GAN, Rand 55.8±10.7 65.8±9.9 40.3±6.5 48.4±5.6 54.2±4.6 58.8±5.8 36.0±6.2 45.3±7.9
FoldingNet, Rand 33.4 ±13.1 35.8±18.2 18.6±6.5 15.4±6.8 58.9±5.6 71.2±6.0 42.6±3.4 63.5±3.9
Latent-GAN, Rand 41.6±16.9 46.2±19.7 32.9±9.2 25.5±9.9 64.5±6.6 79.8±3.4 50.5±3.0 62.5±5.1
PointCapsNet, Rand 42.3±17.4 53.0±18.7 38.0±14.3 27.2±14.9 59.4±6.3 70.5±4.8 44.1±2.0 60.3±4.9
PointNet++, Rand 38.5±16.0 42.4±14.2 23.1±7.0 18.8±5.4 79.9±6.8 85.0±5.3 55.4±2.2 63.4±2.8
PointCNN, Rand 65.4±8.9 68.6±7.0 46.6±4.8 50.0±7.2 75.8±7.7 83.4±4.4 56.3±2.4 73.1±4.1

PointNet, Rand 52.0±12.2 57.8±15.5 46.6±13.5 35.2±15.3 74.2±7.3 82.2±5.1 51.4±1.3 58.3±2.6
PointNet, cTree 63.2±10.7 68.9±9.4 49.2±6.1 50.1±5.0 76.5±6.3 83.7±4.0 55.5±2.3 64.0±2.4
PointNet, OcCo 89.7±6.1 92.4±4.9 83.9±5.6 89.7±4.6 77.7±8.0 84.9±4.9 60.9±3.7 65.5±5.5
DGCNN, Rand 31.6 ±9.0 40.8±14.6 19.9±6.5 16.9±4.8 58.3±6.6 76.7±7.5 48.1±8.2 76.1±3.6
DGCNN, cTree 60.0±8.9 65.7±8.4 48.5±5.6 53.0±4.1 86.2±4.4 90.9±2.5 66.2±2.8 81.5±2.3
DGCNN, OcCo 90.6±2.8 92.5±6.0 82.9±4.1 86.5±7.1 79.9±6.7 86.4±4.7 63.3±2.7 77.6±3.9

Detailed results of the part segmentation Here in Table 15 we report the detailed scores on each individual shape cat-
egory from ShapeNetPart, we bold the best scores for each class respectively. We show that for all three encoders, OcCo-
initialisation has achieved better results over two thirds of these 15 object classes.

Table 15: Detailed Results on Part Segmentation Task on ShapeNetPart

Shapes PointNet PCN DGCNN
Rand* Jigsaw OcCo Rand Jigsaw OcCo Rand* Jigsaw* OcCo

mean (point) 83.7 83.8 84.4 82.8 82.8 83.7 85.1 85.3 85.5
Aero 83.4 83.0 82.9 81.5 82.1 82.4 84.2 84.1 84.4
Bag 78.7 79.5 77.2 72.3 74.2 79.4 83.7 84.0 77.5
Cap 82.5 82.4 81.7 85.5 67.8 86.3 84.4 85.8 83.4
Car 74.9 76.2 75.6 71.8 71.3 73.9 77.1 77.0 77.9

Chair 89.6 90.0 90.0 88.6 88.6 90.0 90.9 90.9 91.0
Earphone 73.0 69.7 74.8 69.2 69.1 68.8 78.5 80.0 75.2

Guitar 91.5 91.1 90.7 90.0 89.9 90.7 91.5 91.5 91.6
Knife 85.9 86.3 88.0 84.0 83.8 85.9 87.3 87.0 88.2
Lamp 80.8 80.7 81.3 78.5 78.8 80.4 82.9 83.2 83.5
Laptop 95.3 95.3 95.4 95.3 95.1 95.6 96.0 95.8 96.1
Motor 65.2 63.7 65.7 64.1 64.7 64.2 67.8 71.6 65.5
Mug 93.0 92.3 91.6 90.3 90.8 92.6 93.3 94.0 94.4
Pistol 81.2 80.8 81.0 81.0 81.5 81.5 82.6 82.6 79.6

Rocket 57.9 56.9 58.2 51.8 51.4 53.8 59.7 60.0 58.0
Skateboard 72.8 75.9 74.2 72.5 71.0 73.2 75.5 77.9 76.2

Table 80.6 80.8 81.8 81.4 81.2 81.2 82.0 81.8 82.8

D. Algorithmic Description of OcCo

Algorithm 1 Occlusion Completion (OcCo)

P: an initial point cloud
K: camera intrinsic matrix
V: number of total view points
loss: a loss function between point clouds
c: encoder-decoder completion model
p: downstream prediction model

while i < V:
sample a random view-point
R_t = [random.rotation(), random.translation()]

map point cloud to camera reference frame
P_cam = dot(K, dot(R_t, P))

create occluded point cloud
P_cam_oc = occlude(P_cam, alg='z-buffering')

point cloud back to world frame
K_inv = [inv(K), zeros(3,1); zeros(1,3), 1]
R_t_inv = transpose([R_t; zeros(3,1), 1])
P_oc = dot(R_t_inv, dot(K_inv, P_cam_oc))

complete point cloud
P_c = c.decoder(c.encoder(P_oc))

compute loss, update via gradient descent
l = loss(P_c, P)
l.backward()
update(c.params)
i += 1

downstream tasks, use pre-trained encoders
p.initialise(c.encoder.params)
p.train()

E. Visualisation from Completion Pre-Training
In this section, we show some qualitative results of OcCo pre-training by visualising the input, coarse output, fine output

and ground truth at different training epochs and encoders. In Figure. 10, Figure. 11 and Figure. 12, we notice that the trained
completion models are able to complete even difficult occluded shapes such as plants and planes. In Figure. 13 we plot some
failure examples of completed shapes, possibly due to their complicated fine structures, while it is worth mentioning that the
completed model can still completed these objects under the same category.

Figure 10: OcCo pre-training with PCN encoder on occluded ModelNet40.

Figure 11: OcCo pre-training with PointNet encoder on occluded ModelNet40.

Figure 12: OcCo pre-training with DGCNN encoder on occluded ModelNet40.

Figure 13: Failure completed examples during OcCo pre-training.

