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K αl αh Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

2 0.05 0.15 0.055 0.006 0.083 0.075 0.977 0.998 1.000
8 0.05 0.15 0.054 0.006 0.084 0.074 0.979 0.999 1.000
4 0.01 0.3 0.054 0.007 0.087 0.080 0.971 0.997 1.000
4 0.05 0.3 0.055 0.007 0.087 0.079 0.976 0.998 1.000
4 0.01 0.15 0.053 0.006 0.083 0.075 0.980 0.998 1.000
4 0.05 0.15 0.051 0.005 0.076 0.069 0.987 0.998 1.000

Table 1: Hyperparameter analysis. The experiment was conducted on scene0521.

A. Implementation Details
To train the proposed system, we mostly followed NeRF

[5]. Specifically, we sampled 64 points in each ray and used
a batch of 1024 rays. Since we did not adopt coarse-to-fine
strategy in the sampling process, we only need one network
(the architecture is same with [5]) to optimize the neural ra-
diance fields. We added random Gaussian noise with zero
mean and unit variance to the density σ to regularize the net-
work. In addition, following [5], positional encoding was
also employed. Adam was adopted as our optimizer with
the initial learning rate as 5 × 10−4 and decayed exponen-
tially to 5 × 10−5. We utilized PyTorch [7] in our imple-
mentation. Each scene was trained with 200K iterations on
a single RTX 2080 Ti.
Error metrics. We follow the metrics in [2, 4, 6, 10, 11, 13]
to evaluate depth estimation results:

• Abs Rel: 1
|T |

∑
y∈T |y − y∗|/y∗

• Sq Rel: 1
|T |

∑
y∈T ||y − y∗||2/y∗

• RMSE:
√

1
|T |

∑
y∈T ||y − y∗||2

• RMSE log:
√

1
|T |

∑
y∈T || log y − log y∗||2

• δ < t: % of y s.t. max( y
y∗ ,

y∗

y ) = δ < t

where y and y∗ indicate predicted and groundtruth depths
respectively, and T indicates all pixels on the depth image.
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B. Baseline Method Details
We compared our results with several state-of-the-art

depth estimation method, which can be roughly classified
as four categories:
Conventional multi-view stereo: COLMAP [8, 9], ACMP
[12]. COLMAP is a non-learning MVS method for 3D re-
construction building upon PatchMatch stereo [1]. Based on
COLMAP, ACMP introduces planar models to solve low-
textured areas in complex indoor environments.
Learning-based multi-view stereo: DELTAS [10], At-
las [6]. These two methods are trained on ScanNet with
groundtruth depth supervision. For DELTAS, we used two
neighboring frames as the reference frames.
Monocular depth estimation: Mannequin Challenge [3].
Mannequin Challenge is a state-of-the-art monocular depth
estimation method. We directly used their pretrained weight
for evaluation.
Video-based depth estimation: CVD [4], DeepV2D [11].
For video-based methods, we sorted images in a scene ac-
cording to the timeline. DeepV2D is trained on ScanNet
with groundtruth depth supervision.

C. Hyperparameter Analysis
To further demonstrate the effectiveness of our method,

we did hyperparameter analysis for the number of used min-
imum errors K, and the bounds αl, αh used in the guided
sampling process. The experiments were conducted on



scene0521. Table 1 shows experimental results. We find
that using a K that is too small or too large will degrade
the performance. On the one hand, it is possible to satisfy
the multi-view consistency check although the depths are
not correct. Small K will increase the probability of this
phenomenon. On the other hand, there are pixels that do
not overlap across some view pairs. Thus, the projection
errors on some views are invalid and a large K may cover
these invalid views. In addition, a large upper bound αh

or a small lower bound αl for sampling range will lead to
worse results, which indicates the necessity to set bounds in
sampling process.

D. Additional Qualitative Results

In addition, we attach a video demo in the submitted
supplementary material to show qualitative comparisons of
multi-view depth estimation between our method and state-
of-the-art methods [4–6].
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