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A. Coordinate-based Method Review

Normalized Object Coordinate Space (NOCS) NOCS
is a category-level canonical reference frame defined within
a unit 3D cube introduced in [5]. The objects from the same
category in NOCS are consistently aligned to a category-
level canonical orientation. These objects are further zero-
centered and uniformly scaled so that their tight bounding
boxes are centered at the origin of NOCS with a diagonal
length of 1.

Mathematically, for an object point cloud X ∈ RN×3,
its corresponding point-wise normalized object coordinates
are denoted as Y ∈ RN×3. The transformation between
Y in the NOCS frame and X in the camera frame is a 7D
similarity transformation T (j) = {s(j), R(j), T (j)}, which
satisfies X = sRY + T . This 7D transformation defines
the category-level 6D pose and 1D uniform scale of rigid
objects.

Given the input object point cloud X , Wang et. al. [5]
trained a deep neural network to directly regress Y . The
7D similarity transformation can then be computed with the
3D-3D point correspondence established between X and
Y using the Umeyama algorithm [4] along with RANSAC.
Knowing the 1D scale s, the actual object size d ∈ R3 can
be estimated as d = s× (|x|max, |y|max, |z|max).

Normalized Part Coordinate Space (NPCS) Li et. al.[1]
extended the definition of NOCS to rigid parts in articu-
lated objects, and proposed a part-level canonical reference
frame, namely NPCS. Similar to NOCS, each individual
part has canonical orientation, zero translation, and normal-
ized scale in its NPCS. Leveraging per-point NPCS estima-
tions, per-part 9DoF poses can be estimated in the same way
as NOCS.
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C. Per-part Rotation, Scale and Translation
Computation

C.1. Euclidean Mean of Rotations
For averaging over rotations, we adopt the euclidean

mean [2] of the multiple rotation predictions, which con-
verts the 6D rotation representation back to matrix format,
takes the mean matrix, and then project back to SO(3). Tak-
ing a binary segmentation mask m

(j)
t+1, our final prediction

is given by R̂
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t+1 = EuclideanMean({R̂(j)

i,t+1|i ∈ m
(j)
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C.2. Rotation Supervision for Symmetric Objects
Unseen instances from symmetric object categories, like

bowls or bottles contain a rotation ambiguity around their
symmetric axis q̂ [5]. Due to this rotation ambiguity, only
two degrees of freedom in the rotation are unique and
should be supervised. We propose to regress the 3D end-
point position pR̂ of its unit rotation axis q̂. Similar to [7],
the redundancy in the representation renders a continuous
and regression-friendly rotation representation for symmet-
ric objects. On the other hand, articulated objects rarely
have rotational ambiguities for their rigid parts, since their
kinematic structures usually help to disambiguate. There-
fore, we only use the symmetric rotation representation for
the bowl, bottle, and can categories in the NOCS-REAL275
dataset [5].



C.3. Coordinate Supervision for Symmetric Objects
For a symmetric object, e.g., a bowl, its normalized

coordinates contain ambiguities: one can freely rotate
them together along its symmetric axis. Note that point
pairwise distances are invariant under the rotation as are
their y and

√
x2 + z2 values (y is the symmetric axis).

To supervise coordinate predictions for symmetric ob-
jects, we propose to jointly enforce an L2 loss on the
pairwise distance matrix and a symmetric coordinate loss√
|x2 + z2 − x̂2 − ẑ2|+ (y − ŷ2) on the normalized coor-

dinates.

C.4. Scale and Translation Computation
For part j, given segmentation mask prediction m̃
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and normalized coordinate predictions from the Coordi-
nateNet, we can obtain input points from part j, namely
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t+1} and their corresponding nor-
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Based on RotationNet predictions, we can compute ab-
solute per-part rotation prediction R̃
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We compute the scale and translation of part j as follows:
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For symmetrical objects, Let Ũ (j)
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This is because for ground-truth normalized coordinates
Y
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due to the object symmetry.
To simplify the problem, we assume l overlaps with the

y-axis, then R(l, θ) becomes a 2D rotation in xz-plane.
We propose to take the xz-plane projection of everything

and use the 2D version of Umeyama algorithm [4] to com-
pute R(l, θ). Then we have:
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This is the same case as asymmetrical objects, we can
compute s̃
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t+1 and T̃
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t+1 similarly.

D. Implementation Details
D.1. Network Input

For synthetic articulated data, the input to our network
is a partial depth point cloud projected from a single-view
depth image, downsampled to N = 4096 points using FPS.
For NOCS-REAL275 data, our pipeline crops a ball cen-
tered at estimated position of the object center, with a radius
1.2 times the object’s estimated radius. Scene points within
the ball are then downsampled to N = 4096 points.

D.2. Training Details

Our network is implemented using PyTorch and opti-
mized by the Adam optimizer, with a learning rate start-
ing at 10−3 and decay by half every 20 epochs. It
takes around 20 and 100 epochs for our model to con-
verge on the rigid object dataset and the articulated ob-
ject dataset, respectively. We have made our code public
at https://github.com/halfsummer11/CAPTRA

D.3. Network Architecture

Both CoordinateNet and RotationNet use PointNet++ [3]
MSG segmentation network as their backbone. The de-
tailted architecture is as follows:

Backbone:
SA(num points = 512,radius = [0.05, 0.1, 0.2],

mlps=[[32, 32, 64], [64, 64, 128], [64, 96, 128]]) →
SA(num points = 128,radius = [0.2, 0.4],

mlps=[[128, 128, 256], [128, 196, 256]]) →
GlobalSA(mlp=[256, 512, 1024]) →

FP(mlp=[256, 256]) →
FP(mlp=[256, 128]) →
FP(mlp=[128, 128])

CoordinateNet:
Backbone →

Coordinate Head:MLP([128, 3P ]) → Sigmoid()
Segmentation Head:FC([P + 1]) → Softmax()

RotationNet:
Backbone → MLP([512, 512, 256, 6P ])

We use LeakyReLU and group normalization for each FC
layer in set abstraction (SA) and feature propagation (FP)
layers.

E. SAPIEN Articulated Objects Data Genera-
tion and Statistics

We render our synthetic articulated object pose tracking
dataset using SAPIEN [6]. In Table 1, we summarize for

https://github.com/halfsummer11/CAPTRA


Category
Part definitions Data statistics

Training Pose Perturbation
Distribution N (0, σ)

Part 0 Part 1 Part 2 Part 3 Train/Test
Average joint
state change σscale σrot(◦) σtrans(cm)

glasses right temple left temple base - 47/8 19.19◦ 0.02 5 2
scissors right half left half - - 33/3 34.32◦ 0.01 3 1
laptop base display - - 49/6 26.13◦ 0.015 3 2

drawers lowest middle top base 28/2 3.72cm 0.02 3 2
Table 1. Statistics of our synthetic articulated object dataset.

each object category 1) the part definitions; 2) the train-
test split; 3) the average joint state change over all test se-
quences (each consisting of 100 frames); and 4) the variance
of Gaussian noise distributions from which we sample in-
put pose perturbations during training. Note that both the
global pose and the joint states of the articulated objects
are changing in the trajectories.

We use different amount of noise for different object cat-
egories depending on the difficulty of pose estimation, e.g.
the poses of thin glasses temples are difficult to predict,
therefore we train the model with a larger perturbation to
handle larger prediction error during tracking.

F. Experiment Details of Real Drawers under
Robot-Object Interaction

Figure 1. Synthetic training data for real drawers tracking. We
use SAPIEN environment to render depth sequences where a Ki-
nova Jaco2 robotic arm manipulates one drawer. Here color im-
ages are for visualization only.

To mimic the interaction scenario, we simulate a Kinova
Jaco2 robotic arm in the SAPIEN [6] environment, make it
push synthetic drawers from the SAPIEN dataset, and ren-
der depth images. Figure 1 shows two examples of our sim-
ulated data. We train our model only on these synthetic
depth images following the same protocol as in Section 5.3.

G. Discussions on not Using RANSAC
Most coordinate-based pose estimation approaches

heavily rely on RANSAC during pose fitting, because rota-
tions estimation done by orthogonal Procrustes is very sen-
sitive to outliers. In our pipeline, the pose canonicalization
significantly simplifies the rotation regression and reduce
the noise in the coordinate prediction, thus freeing us from
the need to use RANSAC. Our experiment shows that incor-
porating RANSAC to our scale and translation computation

Method NOCS CASS CPS++ Oracle
ICP 6PACK 6PACK Ours

Input RGBD RGBD RGB Depth RGBD RGBD Depth
Setting Single frame Tracking

Initialization N/A N/A N/A GT. GT. Pert. Pert.

bottle

5◦5cm ↑ 5.50 11.49 2.90 0.28 14.11 17.48 79.46
mIoU↑ 33.73 34.72 27.91 10.72 59.77 49.98 72.11
Rerr ↓ 25.60 18.39 14.81 44.03 21.45 12.83 3.29
Terr ↓ 14.40 26.66 32.67 8.28 3.36 4.97 2.60

bowl

5◦5cm ↑ 62.20 33.50 5.61 0.45 40.46 34.30 79.20
mIoU↑ 78.78 62.36 32.07 11.54 56.29 56.15 79.64
Rerr ↓ 4.70 5.98 12.39 30.31 5.83 6.78 3.50
Terr ↓ 1.20 4.76 19.97 6.65 1.64 1.67 1.43

can

5◦5cm ↑ 7.10 22.24 3.22 0.49 28.07 21.51 64.70
mIoU↑ 49.56 59.43 33.20 10.50 50.32 49.48 62.47
Rerr ↓ 16.90 12.08 13.99 43.85 11.66 16.58 3.43
Terr ↓ 4.00 9.08 19.75 8.48 5.03 5.82 5.69

camera

5◦5cm ↑ 0.60 12.73 0.29 0.60 6.89 0.97 0.41
mIoU↑ 58.13 60.84 36.18 19.62 52.10 51.55 2.50
Rerr ↓ 33.80 14.70 30.22 36.09 49.96 57.65 17.82
Terr ↓ 3.10 7.29 16.12 7.23 6.06 5.65 35.53

laptop

5◦5cm ↑ 25.50 82.81 0.51 1.60 64.09 36.31 94.03
mIoU↑ 52.59 63.98 19.58 22.11 49.76 49.79 87.20
Rerr ↓ 8.60 5.89 30.85 14.39 5.03 6.12 2.24
Terr ↓ 2.40 3.89 13.47 8.41 2.57 2.44 1.48

mug

5◦5cm ↑ 0.90 13.85 0.90 0.48 19.90 22.23 55.17
mIoU↑ 58.08 54.56 31.15 13.63 64.26 64.54 80.70
Rerr ↓ 31.50 27.97 49.65 73.02 22.06 17.99 5.36
Terr ↓ 4.00 20.76 27.73 7.21 1.19 1.17 0.79

all

5◦5cm ↑ 16.97 29.44 2.24 0.65 28.92 22.13 62.16
mIoU↑ 55.15 55.98 30.02 14.69 55.42 53.58 64.10
Rerr ↓ 20.18 14.17 25.32 40.28 19.33 19.66 5.94
Terr ↓ 4.85 12.07 21.62 7.71 3.31 3.62 7.92

all
w/o
cam.

5◦5cm ↑ 20.24 32.78 2.63 0.66 33.33 26.37 74.51
mIoU↑ 54.55 55.01 28.78 13.70 56.08 53.99 76.42
Rerr ↓ 17.46 14.06 24.34 41.12 13.20 12.06 3.56
Terr ↓ 5.20 13.03 22.72 7.81 2.76 3.21 2.40

Table 2. Per-category results of category-level rigid object pose
tracking on NOCS-REAL275

.
Mask Source CoordNet(Depth) NOCS(RGB) GT

5◦5cm↑ 0.41 9.05 20.09
mIoU↑ 2.50 33.00 46.35
Rerr ↓ 17.82 20.75 10.89
Terr ↓ 35.53 13.09 3.67

Table 3. Results on the camera category from NOCS-REAL275
with different segmentation mask sources.

only bring very little improvements, i.e., increasing 5◦5cm
accuracy and mIoU by 0.86% and 1.85% respectively for
rigid objects from NOCS-REAL275, 0.06% and 0.06% re-
spectively for articulated objects from SAPIEN. In contrast,



Method ANCSH Oracle
ICP Ours C-sRT C-CrdNet C-Crd.+

DSAC++
Ours w/o
Lc, Ls, Lt

glasses

5◦5cm↑ 72.6, 75.8, 81.9 46.9, 46.1, 78.4 97.7, 95.3, 99.6 27.1, 22.6, 25.3 91.6, 89.2, 91.5 81.9, 84.0, 92.4 97.4, 96.0, 99.2
mIoU↑ 73.7, 74.3, 47.7 65.8, 67.2, 56.0 81.8, 81.4, 57.2 12.6, 11.5, 1.7 81.2, 80.8, 56.7 67.7, 71.2, 41.5 80.8, 80.8, 55.0
Rerr ↓ 4.17, 3.86, 3.58 11.00, 10.22, 4.66 1.72, 1.93, 1.22 5.80, 5.86, 2.98 2.78, 3.06, 1.90 3.43, 3.17, 2.00 1.87, 2.14, 1.47
Terr ↓ 0.47, 0.50, 0.23 2.10, 2.82, 1.98 0.27, 0.26, 0.14 11.43, 12.56, 12.67 0.25, 0.24, 0.14 0.55, 0.39, 0.22 0.27, 0.33, 0.17
θerr ↓ 1.40, 1.43 5.25, 4.25 0.94, 0.97 3.26, 3.64 0.65, 0.74 0.73, 0.65 0.93, 1.14

scissors

5◦5cm↑ 98.7, 98.8 25.7, 28.3 99.0, 99.4 3.1, 2.7 96.6, 98.7 99.5, 99.9 98.4, 99.4
mIoU↑ 64.0, 64.4 19.9, 26.8 65.6, 71.9 1.1, 1.6 64.9, 72.5 65.7, 71.4 63.0, 72.2
Rerr ↓ 1.82, 1.77 19.85, 17.30 1.60, 1.17 55.17, 59.08 2.25, 1.88 1.56, 1.77 1.48, 1.23
Terr ↓ 0.16, 0.21 7.80, 4.82 0.12, 0.14 7.63, 7.62 0.10, 0.12 0.13, 0.14 0.14, 0.15
θerr ↓ 1.96 13.14 1.85 11.11 1.93 1.96 1.89

laptop

5◦5cm↑ 97.5, 99.1 81.4, 92.4 97.1, 97.2 38.8, 57.3 96.1, 98.3 96.5, 98.4 96.6, 95.9
mIoU↑ 70.3, 50.6 52.5, 62.7 76.2, 53.5 45.9, 40.4 74.3, 54.0 47.5, 42.7 73.2, 47.8
Rerr ↓ 1.72, 1.08 6.85, 1.70 0.62, 1.22 4.86, 2.61 3.02, 1.92 2.14, 1.49 1.18, 1.31
Terr ↓ 0.58, 0.49 2.00, 0.90 0.32, 0.35 9.63, 6.18 0.58, 0.52 1.31, 1.00 0.43, 0.42
θerr ↓ 1.48 3.74 1.33 3.69 1.94 2.17 1.35

drawers

5◦5cm↑ 94.3, 93.5, 98.1, 99.6 65.8, 79.7, 79.9, 96.4 99.6, 99.6, 99.6, 99.7 6.7, 11.2, 14.1, 11.3 92.2, 91.7, 97.2, 97.4 97.2, 96.7, 97.8, 97.5 97.4, 97.3, 98.0, 98.5
mIoU↑ 80.7, 83.3, 84.4, 91.1 73.8, 80.8, 82.3, 93.3 85.1, 86.4, 89.8, 94.2 26.2, 30.3, 30.9, 41.2 83.5, 84.7, 88.8, 93.0 84.2, 85.2, 88.2, 88.2 84.9, 86.3, 88.9, 92.0
Rerr ↓ 2.11, 2.21, 1.67, 0.69 8.45, 5.40, 2.69, 0.80 0.18, 0.18, 0.19, 0.23 22.07, 15.82, 16.20, 23.39 2.22, 2.20, 1.23, 0.63 1.18, 1.21, 0.83, 0.70 0.55, 0.65, 0.44, 0.51
Terr ↓ 1.15, 0.85, 0.68, 0.51 3.33, 2.51, 1.48, 1.07 0.59, 0.60, 0.38, 0.29 22.99, 17.56, 13.07, 18.77 0.91, 0.93, 0.46, 0.57 0.70, 0.62, 0.40, 0.66 0.74, 0.73, 0.51, 0.36
derr ↓ 0.72, 0.62, 0.58 1.33, 1.00, 0.82 0.37, 0.36, 0.28 5.31, 6.91, 10.48 0.75, 0.83, 0.68 0.46, 0.65, 0.58 0.39, 0.37, 0.32

Table 4. Per-part, per-category results of category-level articulated object pose tracking on held-out instances from SAPIEN.

when we remove RANSAC, C-CoordinateNet drops 3.22%
on 5◦5cm accuracy and 4.37% on mIoU, due to the afore-
mentioned rotation sensititity.

H. Additional Results
H.1. Per-Category Results for Rigid Objects

Table 2 summarizes the per-category results for rigid ob-
ject pose tracking on NOCS-REAL275. Our method only
fails on the camera category and outperforms the previ-
ous state-of-the-arts under most metrics on all other cate-
gories. This is mainly due to the huge domain gap between
our mostly synthetic training data and real camera test in-
stances - 2 out of 3 are black and hence yield a larger sensor
noise. Our method purely relying on depth points is not
designed to cope with this issue. Consequently, our Co-
ordinateNet fails to segment out the camera instances. To
ameliorate this issue, we use 2D segmentation masks from
RGB-based Mask-RCNN detection predictions provided in
[5]. When there are multiple RoIs of the camera category,
we choose the one having the biggest overlap with a pre-
dicted 2D bounding box computed from our previous pose
estimation. We also test our method with ground-truth seg-
mentation masks. The results are shown in Table 3. Our
performance significantly improves with better segmenta-
tion predictions.

H.2. Per-Part, Per-Category Results for Articulated
Object Tracking

Table 4 shows per-part, per-category articulated object
pose tracking results on our synthetic dataset. In most cases,
we perform better than the baseline methods and the ablated
versions. We also achieve the best overall performance as
shown in the main paper.

Dataset Metric Orig. Init.×1 Init.×2 All×1 All×2

Rigid

5◦5cm 62.16 59.64 55.94 59.83 58.69
mIoU 64.10 61.40 57.56 61.30 60.40
Rerr 5.94 5.95 5.93 5.81 5.89
Terr 7.92 10.23 10.78 9.82 13.08

Arti.

5◦5cm 98.35 98.40 97.75 98.45 97.68
mIoU 74.00 74.00 73.68 74.05 75.53
Rerr 1.03 1.03 1.18 1.01 1.39
Terr 0.29 0.29 0.32 0.29 0.39

Table 5. Robustness to pose errors. Init.×m means adding m
times train-time errors in pose initialization, on top of the 1× train-
time error already used in our original setting (denoted Orig.), and
All×m means adding m times the errors to all estimated poses.

H.3. Robustness to Pose Errors

Table 5 shows the performance of our model w.r.t. dif-
ferent amount of pose errors. We test our model under the
following settings: (1) increasing the intial pose error by 1
or 2 times, denoted as Init.×1 and Init.×2; and (2) adding 1
or 2 times pose error to every previous frame’s prediction,
denoted as All.×1 and All.×2, to examine the robustness to
pose initialization and estimation errors, respectively. For
rigid objects, our performance degrades gracefully. And as
shown in Fig.4 of the main paper, it is significantly more
robust to noises than 6-PACK. For articulated objects, our
method is very robust with less than 1 point drop on both
5◦5cm and mIoU metrics.

H.4. Additional Visualization

See Fig.2 - 4 for our visual tracking results. For more
visual results, please refer to our supplementary videos.



Figure 2. Result visualization on the SAPIEN articulated object dataset. Here we compare our method with oracle ANCSH, which
assumes the availability of ground truth part masks.



Figure 3. Result visualization on the NOCS-REAL275 dataset. Here we compare our method with 6-PACK initialized with the same
pose noise as ours.

Figure 4. Result visualization on the real laptop trajectories from the BMVC dataset. Here we compare our method with Oracle
ANCSH under the category-level setting, where the two methods only see synthetic data from SAPIEN during training and directly test on
the real data without finetuning.



References
[1] Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn

Abbott, and Shuran Song. Category-level articulated object
pose estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3706–3715,
2020. 1

[2] Maher Moakher. Means and averaging in the group of ro-
tations. SIAM Journal on Matrix Analysis and Applications,
24(1):1–16, 2002. 1

[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems, pages 5099–5108, 2017. 2

[4] Shinji Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(4):376–380,
1991. 1, 2

[5] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object co-
ordinate space for category-level 6D object pose and size esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2642–2651, 2019. 1, 4

[6] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu,
Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He
Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao
Su. SAPIEN: A simulated part-based interactive environment.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 2, 3

[7] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5745–5753, 2019. 1


