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1. Details of network architecture

Table 1 presents the details of our ET-Net architecture. Fig. 1 illustrates the details of Transformer block used in TPA.
The embedding dimension of our Transformer Blocks is 256. Eight heads are utilized for MSA/MCA. The dimension setting
for the two-layer FFN is 256-1024-256. Additionally, ReL U activation function is adopted after the first linear layer of FFN.
In order to alleviate over-fitting, we employ dropout with 0.1 after each MCA/MSA and each linear layer of FFN.

Layer  Description Output size

Recurrent Convolutional Backbone (RCB)

Conv2d: 5 X 5 x 5 x 32, Stride 1, Padding 2
ReLU
Conv2d: 32 X 5 x 5 x 64, Stride 2, Padding 2
RBI  ReLU 64 x 1H x tW
ConvLSTM
Conv2d: 64 x 5 x 5 x 128, Stride 2, Padding 2
RB2  ReLU 128 x 1H x 1w
ConvLSTM
Conv2d: 128 x 5 x 5 x 256, Stride 2, Padding 2
RB3  ReLU 256 x $H x W
ConvLSTM

Head 32x HxW

Token Pyramid Aggregation (TPA)
TBO0-3 Trans-En N + Trans-De M S HW x 256
Multi-Level Upsampler (MLU)

Interp2d: upsampling-factor 2
UB3  Conv2d: 256 x 5 x 5 x 128, Stride 1, Padding 2 128 x 1 H x 1 W
ReLU
Interp2d: upsampling-factor 2
UB2  Conv2d: 128 x 5 x 5 x 64, Stride 1, Padding2 64 x 1 H x 1 W
ReLU
Interp2d: upsampling-factor 2
UB1 Conv2d: 64 x 5 x 5 x 32, Stride 1, Padding 2 32x HxW
ReLU
Conv2d: 32 x 1 x 1 x 1, Stride 1, Padding 0O
Sigmoid
Table 1. Details of the ET-Net architecture. RB, TB and UB denote Recurrent Block, Transformer Block and Upsampling Block, respec-
tively.

Tail 1xHxW

*Correspondence should be addressed to zhyuey @ustc.edu.cn
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Figure 1. Details of Transformer block. Transformer encoders are responsible for modeling the internal dependency via Multi-head Self-
Attention scheme. Transformer decoders are responsible for modeling the intersected dependency via Multi-head Cross-Attention scheme.

2. Sequentialization process in TPA

Fig. 2 shows the illustrative process of sequentialization utilized in TPA. In this diagram as an example, we show features
at four scales, whose spatial sizes are 16 x 16, 8 x 8, 4 x 4 and 2 x 2 respectively. The sizes of patches at four scales are
8 x 8,4 x4,2x 2and 1 x 1 respectively. Therefore, we can produce 4 unfold tokens for each scale in total.
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Figure 2. Illustrative process of seuquentialization utilized in TPA.



3. Stacking fashions of Transformer blocks for ET-Net variants

In the main paper, we conduct the ablation study on the aggregation scales in TPA, where we introduce four ET-Net
variants. In Fig. 3, we illustrate the stacking fashions of Transformer blocks for the four ET-Net variants. Worthy noting that
the ratio of encoder to decoder and stacking structure (square, trapezoid, funnel, etc.) are two factors to form our Transformer
blocks. In this work, we apply square staking structure, keep the same ratio and follow the protocol: if the total number is
even, we deploy equal encoder/decoder numbers, otherwise the encoder number is one more than the decoder’s.
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Figure 3. Stacking fashion of Transformer blocks.

4. Sequence cuts

In Table 2, we demonstrate cutting parameters we used for each sequence of the [JRR and MVSEC datasets respectively.

IJRR MVSEC

Sequence Start [s] End [s] Sequence Start [s] End [s]
boxes_6dof_cut 5.0 20.0 indoor_flying1_data_cut 10.0 70.0
calibration_cut 5.0 20.0 indoor_flying2_data_cut 10.0 70.0
dynamic_6dof_cut 5.0 20.0 indoor_flying3_data_cut 10.0 70.0
office_zigzag_cut 5.0 12.0 indoor_flying4_data_cut 10.0 19.8
poster_6dof_cut 5.0 20.0 outdoor_day1_data_cut 0.0 60.0
shape_6dof_cut 5.0 20.0 outdoor_day2_data_cut 100.0 160.0
slider_depth_cut 1.0 2.5

Table 2. Sequence cuts for the sequences from IJRR and MVSEC.



5. Breakdown of quantitative results

Table 3 shows the breakdown of the quantitative results of our ET-Net, FireNet+ [3] and E2VID+ [3] on the HQF, IJRR
and MVSEC respectively, which are consistent with quantitative results in the main paper. No post-processing procedures
are applied for all methods.

Sequences MSE | SSIM 1 LPIPS |

FireNet+ E2VID+ Ours FireNet+ E2VID+  Ours FireNet+ E2VID+  Ours

HQF
bike_bay_hdr 0.0353 0.0362 0.0320 0.586 0.623 0.644 0.354 0.298 0.304
boxes 0.0483 0.0490 0.0403 0.550 0.579 0.603 0.309 0.264 0.246
desk_6k 0.0435 0.0282 0.0385 0.599 0.676 0.662 0.284 0.191 0.218
desk_fast 0.0389 0.0321 0.0345 0.628 0.702 0.690 0.301 0.211 0.237
desk_hand_only 0.0650 0.0447 0.0553 0.657 0.706 0.667 0.425 0.344 0.421
desk_slow 0.0849 0.0375 0.0452 0.645 0.713 0.689 0.311 0.227 0.269
engineering_posters 0.0344 0.0413 0.0390 0.575 0.583 0.600 0.343 0.314 0.299
high_texture_plants 0.0397 0.0264 0.0224 0.561 0.607 0.619 0.182 0.163 0.151
poster_pillar_1 0.0300 0.0316 0.0161 0.579 0.604 0.639 0.345 0.269 0.269
poster_pillar_2 0.0596 0.0264 0.0179 0.583 0.654 0.667 0.391 0.239 0.279
reflective_materials 0.0540 0.0397 0.0548 0.586 0.624 0.613 0.333 0.289 0.303
slow_and_fast_desk 0.0374 0.0407 0.0252 0.614 0.654 0.682 0.309 0.237 0.229
slow_hand 0.0478 0.0477 0.0353 0.542 0.596 0.610 0.397 0.317 0.343
still _life 0.0327 0.0385 0.0321 0.620 0.611 0.622 0.282 0.247 0.270
Mean 0.0465 0.0371 0.0349 0.595 0.638 0.643 0.326 0.258 0.274
IJRR
boxes_6dof_cut 0.0252 0.0389 0.0140 0.604 0.619 0.692 0.280 0.238 0.243
calibration_cut 0.0248 0.0332 0.0405 0.663 0.639 0.629 0.196 0.187 0.195
dynamic_6dof_cut 0.1410 0.1350 0.1327 0.317 0.298 0.303 0.384 0.352 0.336
office_zigzag_cut 0.0214 0.0420 0.0298 0.507 0.487 0.509 0.298 0.267 0.246
poster_6dof_cut 0.0523 0.0693 0.0521 0.467 0.462 0.531 0.245 0.221 0.221
shape_6dof_cut 0.0858 0.0904 0.0308 0.630 0.755 0.850 0.356 0.186 0.159
slider_depth_cut 0.0467 0.0465 0.0519 0.561 0.599 0.581 0.327 0.239 0.264
Mean 0.0568 0.0650 0.0503 0.535 0.551 0.585 0.298 0.241 0.237
MVSEC

indoor_flying1_data_cut 0.2246 0.1392 0.1232 0.257 0.345 0.341 0.551 0.522 0.473
indoor_flying2_data_cut 0.2325 0.1540 0.1480 0.243 0.328 0.316 0.554 0.523 0.483
indoor_flying3_data_cut 0.2311 0.1606 0.1250 0.253 0.327 0.344 0.551 0.529 0.461
indoor_flying4_data_cut 0.2613 0.1330 0.1307 0.206 0.354 0.335 0.608 0.512 0.522
outdoor_day1_data_cut 0.2059 0.1272 0.0714 0.285 0.273 0.355 0.622 0.571 0.548
outdoor_day2_data_cut 0.2117 0.0956 0.0811 0.344 0.391 0.457 0.557 0.451 0.458
Mean 0.2278 0.1350 0.1133 0.265 0.337 0.358 0.574 0.513 0.491

Table 3. Breakdown of quantitative results of our proposed ET-Net, FireNet+ and E2VID+ on the HQF, IJRR and MVSEC. Performances
on MSE({), SSIM(1) and LPIPS(|) metrics are reported for each scene. 1 indicates that the higher value is better while | indicates that the
lower value is better. The best is in bold while the second best is with underline.

Variants HQF IJRR MVSEC
MSE] SSIM?T LPIPS| MSE| SSIM?t LPIPS | MSE| SSIM?T LPIPS |

ET-Net-2-s4 0.0413 0.619 0.288 0.0902 0.515 0.270 0.113 0.376 0.494
ET-Net-4-s4 0.0403 0.635 0.277 0.0522 0.587 0.236 0.118 0.355 0.491
ET-Net-6-s4 0.0430 0.623 0.286 0.0666 0.549 0.250 0.167 0.312 0.538
E2VID-res6 0.0434 0.601 0.314 0.0756 0.545 0.263 0.165 0.319 0.536
E2VID-res12  0.0388 0.610 0.290 0.0687 0.555 0.250 0.169 0.309 0.521
E2VID-res16  0.0416 0.620 0.281 0.0745 0.545 0.256 0.180 0.311 0.518
ET-Net-4-s4 0.0403 0.635 0.277 0.0522 0.587 0.236 0.118 0.355 0.491
ET-Net-5-s3 0.0408 0.629 0.273 0.0584 0.564 0.242 0.136 0.322 0.490
ET-Net-8-s2 0.0387 0.628 0.291 0.0636 0.547 0.260 0.120 0.341 0.510
ET-Net-16-s1 ~ 0.0586 0.597 0.310 0.0991 0.509 0.284 0.168 0.305 0.523

Table 4. All ablation results of our proposed ET-Net variants and E2VID variants on the HQF, IJRR and MVSEC. Performances on MSE(],),
SSIM(1) and LPIPS({) metrics are reported for each variants. 1 indicates that the higher value is better while | indicates that the lower
value is better. The best is in bold while the second best is with underline.



6. More ablation results and additional clarifications

Table 4 shows all ablation results of our proposed ET-Net variants and E2VID variants on the HQF, IJRR and MVSEC
respectively. Based on these results, we present additional clarifications and discussions.

Domain gap. As shown in Table 4, the domain gap definitely exists among HQF, IJRR and MVSEC. For example, ET-
Net-2-s4 and ET-Net-6-s4 perform worse than ET-Net-4-s4 on HQF and IJRR, while ET-Net-4-s4 perform better than the
others on MVSEC, which indicates that on HQF and MVSEC, a model with small capacity is not capable of capturing the
long range dependency from the latent CNN features, while a large model shows overfitting and degrades the generalization
ability. Due to this domain gap, furthermore our network is trained solely on the synthetic training dataset, thus we cannot
guarantee the same generalization on all real-world datasets. In the nutshell, we conclude our ablation results in the main
paper based on the results on all testing datasets, presenting the overall trend.

Best configuration. In order to search for the best configuration, we conduct experiments with the total number 2 (1
encoder + 1 decoder), 4 (2 encoders + 2 decoders), 6 (3 encoders + 3 decoders). Table 4 shows that the best performance
should be achieved near the place where the total number is 4. Then we conduct more experiments with the total number 3
(2 encoder + 1 decoder), 4 (2 encoders + 2 decoders), 5 (3 encoders + 2 decoders). We achieve the best performance when
the total number is 5 with three scales as reported in the main paper.

7. High Speed and HDR scenes

We further apply our ET-Net to the High Speed and HDR scenes. Fig. 4 demonstrates that our ET-Net performs well in
the High Speed and HDR scenes, recovering more details invisible to conventional cameras.

hdr_tunnel hdr_sun gun_bullet mug gun_bullet_gnome

Figure 4. Visual results of our ET-Net on the sequences from High Speed and HDR datasets [1].

8. Additional qualitative results

Figs. 5, 6 and 7 show more qualitative comparisons of our ET-Net with baselines (FireNet [2], FireNet+, E2VID [1] and
E2VID+) on the sequences from MVSEC, HQF and IJRR, respectively.

9. Reconstructed video clips

The video clips reconstructed from HQF, IJRR and MVSEC datasets using ET-Net as well as other baselines (FireNet,
FireNet+, E2VID and E2VID+) are provided in the supplementary file. It should be noted that the video clips don’t contain
the full span of each sequence. Only a portion of each sequence is used to reconstruct video clips.
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Figure 5. Additional qualitative results of our ET-Net, FireNet, FireNet+, E2VID and E2VID+ on the sequences from MVSEC dataset.
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Figure 6. Additional qualitative results of our ET-Net, FireNet, FireNet+, E2VID and E2VID+ on the sequences from HQF dataset.
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Figure 7. Additional qualitative results of our ET-Net, FireNet, FireNet+
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