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1. Ablation studies
We perform a number of ablation studies, to investigate

the effect of varying dataset generation parameters on down-
stream task accuracy.

1.1. Experiment methodology

In all experiments for model training we use a 10, 000
image synthetic dataset (split to 9, 000 training and 1, 000
validation samples). We evaluate on a landmark detection
task on 300W dataset, following the label adaptation pro-
cedured described in the main paper. We use a ResNet-34
model as the backbone and train all models for 120 epochs
and pick the model that performs best on the synthetic vali-
dation set.

1.2. Pose variability

In this experiment we vary the pose variability in the
dataset. In full pose variability, the neck pose (in de-
grees) varies in the range of (−10, 10) pitch (−25, 25) yaw,
(−10, 10) roll; and head pose varies in the range of (−30, 30)
pitch, (−50, 50) yaw, and (−15, 15) roll. Further the camera
is positioned with spherical coordinates, with polar angle
varying between of (−45, 45), and azimuthal angle varying
between (−25, 25). All pose values are sampled from a
truncated Gaussian distribution. For this ablation study we
dampen the pose variation to 0, 25%, 50%, and 75% of the
original values. Results can be seen in Table 1. Figure 1
shows the effect of increasing pose variation: we see more
faces in profile and other non-frontal poses.

From the results it can be clearly seen that pose variation
is critical for landmark detection accuracy. However, while
landmark detection accuracy increases consistently for the
challenging subset, it plateaus for common and private sets.
This is likely due to them containing less pose variation.
This demonstrates a strength of synthetic data, as it is easy to
tailor the training set to contain the amount of pose variation
present in test data.

*Denotes equal contribution.

Table 1. Landmark localization results on the common, challenging,
and private subsets of 300W with different amount of pose variation
in training data. Lower is better in all cases. Error is reported as
mean of normalized mean error

Common Challenging Private
Method NME NME NME
Pose: 0% 3.98 9.74 5.99
Pose: 25% 3.34 6.51 4.66
Pose: 50% 3.24 5.14 4.25
Pose: 75% 3.24 5.07 4.23
Pose: 100% 3.28 5.04 4.28
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Figure 1. Examples from datasets with reduced pose variability.

1.3. Expression variability

In this experiment we vary the number of expressive faces
(as opposed to neutral faces) present in the synthetic dataset.
We generate datasets with 10%, 25%, 50%, 75%, and 100%
neutral face images. In all experiments in the main paper,
we use 10% neutral frames.

Results can be seen in Table 2. From results we see that
some expression variation is really important, however, the
gains in performance saturate. This is likely to the test sets
not actually containing many examples of varied or extreme
expressions.



Table 2. Landmark localization results on the common, challenging,
and private subsets of 300W with different amount of expression
variation in training data. Lower is better in all cases. Error is
reported as mean of normalized mean error

Common Challenging Private
Method NME NME NME
Neutral: 100% 3.55 5.80 4.94
Neutral: 75% 3.30 5.05 4.32
Neutral: 50% 3.28 5.04 4.31
Neutral: 25% 3.28 5.01 4.28
Neutral: 10% 3.28 5.04 4.28

Table 3. Landmark localization results on the common, challenging,
and private subsets of 300W with different amount of identity
variation in training data. Lower is better in all cases. Error is
reported as mean of normalized mean error

Common Challenging Private
Method NME NME NME
Identities: 25 3.43 5.18 4.48
Identities: 50 3.39 5.19 4.47
Identities: 100 3.35 5.09 4.41
Identities: 1000 3.29 5.04 4.25
Identities: 2000 3.28 5.01 4.31
Identities: 5000 3.27 5.02 4.25
Identities: 10000 3.28 5.04 4.28

1.4. Identity variability

In this ablation study we evaluate the effect on varying
identity in training data. We keep identity (geometry, texture,
accessories) fixed while varying pose, expression, camera,
and environment. This allows us to see how much it is im-
portant to have identity variability compared to other types.
Further, as assembling an identity is computationally expen-
sive, we can save compute by having an identity fixed but
varying other scene parameters, an example of this can be
seen in Figure 2. We generate the entire 10000 image dataset,
but constrain it to contain only a set number of identities.

Results of this experiment can be seen in Table 3. From
the results we can see that going over 2000 unique identities
provides a limited gain in performance. This could be due
to limitation in variability of the underlying assets, mean-
ing that a new unique identity does not provide sufficient
additional diversity.

1.5. Render quality

As a final ablation study we explore the effect on rendered
image quality. We did this by varying the number of path
tracing samples used by the Cycles renderer. This leads to
faster, but lower quality renders. Examples of renders with
different number of Cycles samples can be see in Figure 3.
For dataset used in the main paper we use 256 cycles samples
with a denoiser applied on the image.

You can see the results of this experiment in Table 4.
Increasing the sample count has a positive impact on land-

Figure 2. Example of keeping an identity constant, while varying
expression, pose, camera, and environment
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Figure 3. Examples of renders with different path tracing samples.

Table 4. Landmark localization results on the common, challenging,
and private subsets of 300W with different amount of identity
variation in training data. Lower is better in all cases. Error is
reported as mean of normalized mean error

Common Challenging Private
Method NME NME NME
Samples: 8 3.56 5.45 4.65
Samples: 16 3.45 5.27 4.52
Samples: 32 3.39 5.23 4.47
Samples: 64 3.31 5.07 4.32
Samples: 128 3.29 5.03 4.33
Samples: 256 3.29 4.99 4.28
Samples: 256 + denoising 3.28 5.04 4.28

mark detection accuracy all the way up to 256 samples. This
confirms that rendered image quality is important for down-
stream machine learning accuracy.

2. Method details
In this section we provide additional implementation de-

tails for certain stages of our face generation process.

2.1. Displacement maps

To improve realism, we apply coarse and meso-level dis-
placement to our face geometry. Both these displacement



Figure 4. An example of a coarse displacement map and a meso-
level displacement map for a face scan.

Figure 5. From left to right: a synthetic eye without any makeup,
the same eye with eyeliner, and the same eye with eyeliner and
purple metallic eye shadow.

textures are of the same resolution as the albedo texture:
(8192×8192 px). Please see Figure 4 for an example of a
coarse and meso-level displacement map. Note how the
coarse displacement encodes the broad wrinkles of the face,
while the meso-level map encodes skin-pore and fine-wrinkle
geometry.

Using Blender, we first subdivide the surface of the face
three times using Catmull Clarke [1] subdivision1, to in-
crease its vertex resolution. We then apply the coarse dis-
placement map using a displacement modifier2. However,
since our meso-level displacement is too fine-grained to be
represented with geometry (without excessive levels of sub-
division), we turn the grayscale bump-map into a normal
map, and use this normal map to adjust the surface normals
used during material shading.

2.2. Makeup

We randomly apply make-up effects on top of our base
skin shader by layering two additional components on top:
eyeliner and eye shadow. Note, we do not simulate mascara
(eyelash makeup). These makeup effects have their own
shaders, which are overlaid on top of the skin shader using
alpha-masks which were hand-painted by an artist. We 13
eyeliner masks and 18 eye shadow masks. While eyeliner is
always black, eye shadow can have a color and a degree of
glitter, creating small specular reflections on the upper and
lower eyelids. Please refer to Figure 5 for an example.

1https://docs.blender.org/manual/en/latest/modeling/
modifiers/generate/subdivision_surface.html

2https://docs.blender.org/manual/en/latest/modeling/
modifiers/deform/displace.html#displace-modifier

Figure 6. Eyeglasses are posed using an inverse-kinematics rig,
posed using the three controllers for the nose-bridge and ears, visi-
ble on the left in orange.

2.3. Eyeglasses IK rig

Most of our face accessories represent “soft” items that
are made out of some sort of fabric, e.g. t-shirts or hats made
from cotton or leather. We first author these on the template
face, and deform these in a non-rigid fashion using a lattice
deformation field3, driven by differences between a sampled
identity, and the face template.

However, since eyeglasses are generally made of a few
rigid parts, we pose these using an Inverse Kinematics (IK)
rig. The position of the glasses frame is first determined
using the main controller, located at the nose-bridge. The
two secondary controllers are then placed just above the ears,
and these determine the tilt of the glasses’ temples (a.k.a.
arms). Please see Figure 6.

3. Additional results
Please see the following figures for additional qualitative

results for face parsing and facial landmark localization.
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Figure 7. Pairs of landmark predictions from networks trained on real (top) and synthetic (bottom) data, for the 300W dataset.

Figure 8. Pairs of landmark predictions from networks trained on real (top) and synthetic (bottom) data. Shown here are failure modes that
arise when training with synthetic data only. Problematic cases include extreme illumination and uncommon skin appearance.



Figure 9. Shown here are face parsing results on the LaPa dataset. For each input image, shown left to right are: input color image, face
parsing result from training with synthetic data only, face parsing result after label adaptation, and ground truth.

Figure 10. Additional face parsing results on the LaPa dataset, highlighting failure modes from training with synthetic data. For each set of
images, shown left to right are: input color image, face parsing result from training with synthetic data only, face parsing result after label
adaptation, and ground truth. Failures occur for challenging examples including unusual headwear, extreme make-up, and statue faces.



Figure 11. Here are some additional sampled synthetic faces that we have procedurally generated. Please note the wide range of appearance
diversity arising from randomly combining different face shapes, textures, hair styles, and clothing.



Figure 12. Here are some examples from the dataset we rendered, shown alongside the synthetic ground truth labels for landmark localization
and face parsing. Note the variability in illumination, pose, identity, expression, camera location and focal length.



Figure 13. As we sample each of the assets independently, some renders can result in unlikely (but not impossible) combination of face
shape, texture, hair style, make-up and accessories. However, we do not yet have any evidence that these unlikely faces actually harm
machine learning training, and indeed may contribute to robustness.


