
Rethinking and Improving Relative Position Encoding for Vision Transformer
—— Supplementary Material ——

This supplementary material presents additional details

of Section 3.2, 4.2, 4.3 and 4.4. Besides, two extra exper-

iments are added to demonstrate the effectiveness and gen-

erality of the proposed iRPE. We also provide comparisons

on the inference time.

• Visualization of 2D relative position. To provide an

intuitive understanding, we visualize the proposed 2D

relative position in Section 3.2, including Euclidean,

Quantization, Cross and Product methods.

• Weight initialization. We elaborate the weight setting

of the proposed relative position encoding methods, in-

cluding the weight initialization and whether to equip

with weight decay.

• Computation complexity. We provide a detailed ex-

planation of why the computational costs are the same

for shared and unshared relative position encodings

across attention heads in Tab. 2 of Section 4.2.

• Injecting previous RPE methods into DeiT. We elab-

orate how to inject previous relative position encoding

methods into DeiT [11] in Tab. 5 of Section 4.3.

• Training and test settings of DETR. We provide the

details of training and test settings of DETR [1] in Sec-

tion 4.4.

• The effectiveness on other vision transformers. We

show the effectiveness of the proposed iRPE on the

recent Swin transformer [7].

• Transfer learning on fine-grained datasets. To

verify the generalizability, we evaluate our models

on fine-grained datasets, including Stanford Cars and

CUB200 2011 datasets.

• Inference performance. We compare the proposed

iRPE with previous methods in terms of inference time

and memory cost.

1. Visualization of 2D Relative Position
We visualize the proposed four relative position meth-

ods, i.e., Euclidean, Quantization, Cross and Product, and

present their difference. In DeiT [11], an image is split into

14 × 14 non-overlapping patches, so the number of tokens

is 14 × 14 (except for the classification token). Therefore,

in theory, each token has 14 × 14 relative positions. For

visualization, we select the top-left position (0, 0) and the

(a) top-left (b) center

Figure 6: Visualization of Euclidean method. The red star

� presents the reference position. Different color means

different bucket. The relative positions with the same color

share the same encoding.

center position (7, 7) as the reference positions (presented

by a red star � in the following figures), and then compute

the relative offsets δx = xi − xj and δy = yi − yj between

the reference position and the remaining 14× 14− 1 posi-

tions. Let (δx, δy) denote a 2D relative position. We plot

the map of the relative encoding rij , defined in Eq. (19),

Eq. (21), Eq. (22) and Eq. (25), where i is the reference po-

sition and j is one of the 14× 14 positions. Notice that rij
is either a learnable scalar in bias mode or a vector in con-

textual mode. Multiple rij may share an identical bucket,

which is presented by the same color in Fig. 6 - 9. Different

bucket is presented by different color.

Euclidean method. Fig. 6 shows Euclidean method. It is

an undirected method, since the relative position encodings

only depend on relative Euclidean distance. For example, in

Fig. 6b since the relative positions (−1, 0) and (1, 0) have

the same relative Euclidean distance of 1, they are mapped

into the same bucket (the grids with orange color).

Quantization method. Fig. 7 presents Quantization

method, another undirected method. It is an improved ver-

sion of Euclidean method, and addresses the problem that

the close two neighbors with different relative distances

might be mapped into the same bucket (e.g., he relative

position (1, 0) and (1, 1) are both mapped into the same

bucket in Euclidean method). Besides, the number of buck-

ets in Quantization method is larger than that in Euclidean



(a) top-left (b) center

Figure 7: Visualization of Quantization method. The red

star � presents the reference position. Different color

means different bucket. The relative positions with the same

color share the same encoding.

method. The reason is that Quantization method quantize

Euclidean distance from a set of real numbers {0, 1, 1.41,

2, 2.24, ...} to a set of integers {0, 1, 2, 3, 4, ...}, increasing

the number of buckets for adjacent positions.

Cross method. Fig. 8 shows Cross method. It is a di-

rected method, in which the relative position encoding de-

pends on relative distances and relative directions simulta-

neously. It computes the encodings on horizontal and verti-

cal directions separately, then summarizes them. The same

offsets along x-axis (or y-axis) direction share the same hor-

izontal (or vertical) encoding. For example, the two relative

positions (−1, 0) and (1, 0) share the same encoding on hor-

izontal in Fig. 8c, but not on vertical in Fig. 8d.

Product method. Fig. 9 shows Product method, which

is also a directed method. Unlike Cross method, Product

method does not share the same encoding even if the offsets

are the same along x-axis or y-axis direction. For example,

in Fig. 9b, the two relative positions (−1, 0) and (1, 0) have

independent encodings. Moreover, it is more efficient than

Cross method, since there is no extra addition operation in

Eq. (22).

2. Weight Initialization
The relative position weight rij in Eq. (14) and Eq. (15)

is initialized with zero. We found that there is no dif-

ference between zero and normal-distribution initialization.

Besides, we do not impose weight decay on the weight of

relative position encodings, because its effects on the final

performance is negligible.

3. Computation Complexity
As shown in Tab. 2 (in the main manuscript), the com-

putational costs MACs of shared and unshared relative po-

sition encodings across attention heads are the same. Here,

we provide the detailed explanation. Let h, n, d, k denote

the number of heads, the length of a sequence, the num-

(a) top-left (horizontal) (b) top-left (vertical)

(c) center (horizontal) (d) center (vertical)

Figure 8: Visualization of Cross method. The red star �
presents the reference position. Different color means dif-

ferent bucket. The relative positions with the same color

share the same encoding.

(a) top-left (b) center

Figure 9: Visualization of Product method. The red star

� presents the reference position. Different color means

different bucket. The relative positions with the same color

share the same encoding.

ber of channels and the number of buckets, respectively.

For bias mode, in Eq. (13), the broadcast addition on the

dot-product attention (xiW
Q)(xjW

K)T with the shape of

h × n × n and the encoding bij with the shape of n × n
in shared scheme or h × n × n in unshared scheme takes

the computational cost of O(hn2). For contextual mode,

in Eq. (27), the broadcast multiplication on the input em-

bedding xiW with the shape h × n × d and the relative

position weight p with the shape of d× k in shared scheme

or h × d × k in unshared scheme takes the computational

cost of O(hndk). Due to the broadcast operations, the com-



Figure 10: The extra cost brought by RPEs. The reference

model is DeiT-S [11] without RPE, taking 1,096 images/s

and 8,930 Mb memory.

putational cost of shared and unshared schemes is the same.

4. Injecting Previous RPE Methods into DeiT
In the Tab. 5, in order to compare with previous 1D

relative position encoding methods, we utilize our Prod-

uct method (defined in Sec. 3.2 in the main manuscript) to

adapt 1D encoding methods for 2D images. We replace the

piecewise function g(x) with the clip function h(x), which

is matched with previous methods. The encoding weight

is shared across attention heads. DeiT-S(Shaw’s), DeiT-

S(Trans.-XL’s), DeiT-S(Huang’s) are DeiT-S [11] models

with Shaw’s RPE [10], RPE in Transformer-XL [2] and

Huang’s RPE [6], respectively. Besides, the 2D RPE in

SASA [9] is equipped on DeiT-S [11] directly.

5. Training and Test Settings of DETR
We follow the same training protocol and hyperparam-

eter configurations as the original DETR [1]. The back-

bone model of DETR [1] is ResNet-50 [5], pretrained on

ImageNet [3], and the BatchNorm layers are frozen during

training. All transformer blocks are initialized with Xavier

initialization [4]. The image is cropped such that the short-

est side is at least 480 and at most 800 pixels while the

longest at most 1333. When training, random horizontal

flipping and random cropping are utilized. The initial learn-

ing rates of transformer and backbone are 10−4 and 10−5,

respectively. Learning rates are divided by 10 in the last

50 epochs in 150 epochs schedule, and the last 100 epochs

in 300 epochs schedule. The optimizer is AdamW [8] with

weight decay of 10−4 and a mini-batch size of 16. The num-

ber of queries is 100. We train the models for 150 epochs

and 300 epochs.

6. The Effectiveness on Other Vision Trans-
formers

We further verify the effectiveness of the proposed iRPE

on the recent Swin transformer [7]. Specifically, the origi-

nal Swin-T model without RPE obtains a top-1 accuracy of

80.5% (Tab. 4 in Swin transformer [7]), while using RPE

bias mode gets +0.8% improvements. Our contextual RPE

on QKV can further improve Swin-T to 81.9% on Ima-

geNet.

7. Transfer Learning on Fine-grained Datasets
We finetune the pretrained models on Stanford Cars and

CUB200 2011 datasets using the resolution 224x224 and

300 epochs. DeiT-B [11] with iRPE on keys obtains a top-

1 accuracy of 93.4% and 84.9% on the two datasets re-

spectively, outperforming the original DeiT-B (92.1% and

83.4%) by 1.3% and 1.5% points.

8. Inference Performance
The inference runtime and memory cost are reported in

Fig. 10, tested on Nvidia V100 GPU with a batch size of

128. We can see that our iRPE on keys is more effective.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In ECCV, 2020. 1,

3

[2] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell,

Quoc Le, and Ruslan Salakhutdinov. Transformer-xl: Atten-

tive language models beyond a fixed-length context. In ACL,

2019. 3

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 3

[4] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In AIS-
TATS, pages 249–256, 2010. 3

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 3

[6] Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Im-

prove transformer models with better relative position em-

beddings. In EMNLP, 2020. 3

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,

Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-

former: Hierarchical vision transformer using shifted win-

dows. arXiv preprint arXiv:2103.14030, 2021. 1, 3

[8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 3

[9] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan

Bello, Anselm Levskaya, and Jonathon Shlens. Stand-

alone self-attention in vision models. arXiv preprint
arXiv:1906.05909, 2019. 3

[10] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-

attention with relative position representations. ACL, 2018.

3

[11] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. In ICML, 2021. 1, 3


