Rethinking and Improving Relative Position Encoding for Vision Transformer

This supplementary material presents additional details
of Section 3.2, 4.2, 4.3 and 4.4. Besides, two extra exper-
iments are added to demonstrate the effectiveness and gen-
erality of the proposed iRPE. We also provide comparisons
on the inference time.

* Visualization of 2D relative position. To provide an
intuitive understanding, we visualize the proposed 2D
relative position in Section 3.2, including Euclidean,
Quantization, Cross and Product methods.

* Weight initialization. We elaborate the weight setting
of the proposed relative position encoding methods, in-
cluding the weight initialization and whether to equip
with weight decay.

e Computation complexity. We provide a detailed ex-
planation of why the computational costs are the same
for shared and unshared relative position encodings
across attention heads in Tab. 2 of Section 4.2.

 Injecting previous RPE methods into DeiT. We elab-
orate how to inject previous relative position encoding
methods into DeiT [11] in Tab. 5 of Section 4.3.

* Training and test settings of DETR. We provide the
details of training and test settings of DETR [1] in Sec-
tion 4.4.

* The effectiveness on other vision transformers. We
show the effectiveness of the proposed iRPE on the
recent Swin transformer [7].

e Transfer learning on fine-grained datasets. To
verify the generalizability, we evaluate our models
on fine-grained datasets, including Stanford Cars and
CUB200-2011 datasets.

* Inference performance. We compare the proposed
iRPE with previous methods in terms of inference time
and memory cost.

1. Visualization of 2D Relative Position

We visualize the proposed four relative position meth-
ods, i.e., Euclidean, Quantization, Cross and Product, and
present their difference. In DeiT [ 1], an image is split into
14 x 14 non-overlapping patches, so the number of tokens
is 14 x 14 (except for the classification token). Therefore,
in theory, each token has 14 x 14 relative positions. For
visualization, we select the top-left position (0, 0) and the
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(a) top-left
Figure 6: Visualization of Euclidean method. The red star
% presents the reference position. Different color means
different bucket. The relative positions with the same color
share the same encoding.

(b) center

center position (7,7) as the reference positions (presented
by a red star % in the following figures), and then compute
the relative offsets 6x = x; — x; and dy = y; — y; between
the reference position and the remaining 14 x 14 — 1 posi-
tions. Let (dx, dy) denote a 2D relative position. We plot
the map of the relative encoding r;;, defined in Eq. (19),
Eq. (21), Eq. (22) and Eq. (25), where i is the reference po-
sition and j is one of the 14 x 14 positions. Notice that r;
is either a learnable scalar in bias mode or a vector in con-
textual mode. Multiple r;; may share an identical bucket,
which is presented by the same color in Fig. 6 - 9. Different
bucket is presented by different color.

Euclidean method. Fig. 6 shows Euclidean method. It is
an undirected method, since the relative position encodings
only depend on relative Euclidean distance. For example, in
Fig. 6b since the relative positions (—1,0) and (1, 0) have
the same relative Euclidean distance of 1, they are mapped
into the same bucket (the grids with orange color).

Quantization method.  Fig. 7 presents Quantization
method, another undirected method. It is an improved ver-
sion of Euclidean method, and addresses the problem that
the close two neighbors with different relative distances
might be mapped into the same bucket (e.g., he relative
position (1,0) and (1,1) are both mapped into the same
bucket in Euclidean method). Besides, the number of buck-
ets in Quantization method is larger than that in Euclidean
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Figure 7: Visualization of Quantization method. The red
star % presents the reference position. Different color
means different bucket. The relative positions with the same

color share the same encoding.

method. The reason is that Quantization method quantize
Euclidean distance from a set of real numbers {0, 1, 1.41,
2,2.24, ...} to a set of integers {0, 1, 2, 3, 4, ...}, increasing
the number of buckets for adjacent positions.

Cross method. Fig. 8 shows Cross method. It is a di-
rected method, in which the relative position encoding de-
pends on relative distances and relative directions simulta-
neously. It computes the encodings on horizontal and verti-
cal directions separately, then summarizes them. The same
offsets along x-axis (or y-axis) direction share the same hor-
izontal (or vertical) encoding. For example, the two relative
positions (—1,0) and (1, 0) share the same encoding on hor-
izontal in Fig. 8c, but not on vertical in Fig. 8d.

Product method. Fig. 9 shows Product method, which
is also a directed method. Unlike Cross method, Product
method does not share the same encoding even if the offsets
are the same along x-axis or y-axis direction. For example,
in Fig. 9b, the two relative positions (—1,0) and (1, 0) have
independent encodings. Moreover, it is more efficient than
Cross method, since there is no extra addition operation in
Eq. (22).

2. Weight Initialization

The relative position weight r;; in Eq. (14) and Eq. (15)
is initialized with zero. We found that there is no dif-
ference between zero and normal-distribution initialization.
Besides, we do not impose weight decay on the weight of
relative position encodings, because its effects on the final
performance is negligible.

3. Computation Complexity

As shown in Tab. 2 (in the main manuscript), the com-
putational costs MACs of shared and unshared relative po-
sition encodings across attention heads are the same. Here,
we provide the detailed explanation. Let h,n,d, k denote
the number of heads, the length of a sequence, the num-
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Figure 8: Visualization of Cross method. The red star %
presents the reference position. Different color means dif-
ferent bucket. The relative positions with the same color
share the same encoding.

(d) center (vertical)
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Figure 9: Visualization of Product method. The red star
% presents the reference position. Different color means
different bucket. The relative positions with the same color
share the same encoding.

(b) center

ber of channels and the number of buckets, respectively.
For bias mode, in Eq. (13), the broadcast addition on the
dot-product attention (x; W) (x; W) with the shape of
h x n x n and the encoding b;; with the shape of n x n
in shared scheme or & X n x n in unshared scheme takes
the computational cost of O(hn?). For contextual mode,
in Eq. (27), the broadcast multiplication on the input em-
bedding x; W with the shape h x n x d and the relative
position weight p with the shape of d x k in shared scheme
or h x d x k in unshared scheme takes the computational
cost of O(hndk). Due to the broadcast operations, the com-
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Figure 10: The extra cost brought by RPEs. The reference
model is DeiT-S [1 1] without RPE, taking 1,096 images/s
and 8,930 Mb memory.

putational cost of shared and unshared schemes is the same.

4. Injecting Previous RPE Methods into DeiT

In the Tab. 5, in order to compare with previous 1D
relative position encoding methods, we utilize our Prod-
uct method (defined in Sec. 3.2 in the main manuscript) to
adapt 1D encoding methods for 2D images. We replace the
piecewise function g(x) with the clip function h(z), which
is matched with previous methods. The encoding weight
is shared across attention heads. DeiT-S(Shaw’s), DeiT-
S(Trans.-XL’s), DeiT-S(Huang’s) are DeiT-S [ 1] models
with Shaw’s RPE [10], RPE in Transformer-XL [2] and
Huang’s RPE [0], respectively. Besides, the 2D RPE in
SASA [9] is equipped on DeiT-S [ 1 1] directly.

S. Training and Test Settings of DETR

We follow the same training protocol and hyperparam-
eter configurations as the original DETR [1]. The back-
bone model of DETR [1] is ResNet-50 [5], pretrained on
ImageNet [3], and the BatchNorm layers are frozen during
training. All transformer blocks are initialized with Xavier
initialization [4]. The image is cropped such that the short-
est side is at least 480 and at most 800 pixels while the
longest at most 1333. When training, random horizontal
flipping and random cropping are utilized. The initial learn-
ing rates of transformer and backbone are 10~* and 1075,
respectively. Learning rates are divided by 10 in the last
50 epochs in 150 epochs schedule, and the last 100 epochs
in 300 epochs schedule. The optimizer is AdamW [8] with
weight decay of 10~# and a mini-batch size of 16. The num-
ber of queries is 100. We train the models for 150 epochs
and 300 epochs.

6. The Effectiveness on Other Vision Trans-
formers

We further verify the effectiveness of the proposed iRPE
on the recent Swin transformer [7]. Specifically, the origi-
nal Swin-T model without RPE obtains a top-1 accuracy of
80.5% (Tab. 4 in Swin transformer [7]), while using RPE
bias mode gets +0.8% improvements. Our contextual RPE

on QKV can further improve Swin-T to 81.9% on Ima-
geNet.

7. Transfer Learning on Fine-grained Datasets

We finetune the pretrained models on Stanford Cars and
CUB200-2011 datasets using the resolution 224x224 and
300 epochs. DeiT-B [11] with iRPE on keys obtains a top-
1 accuracy of 93.4% and 84.9% on the two datasets re-
spectively, outperforming the original DeiT-B (92.1% and
83.4%) by 1.3% and 1.5% points.

8. Inference Performance

The inference runtime and memory cost are reported in
Fig. 10, tested on Nvidia V100 GPU with a batch size of
128. We can see that our iRPE on keys is more effective.
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