
Supplementary Material of
An Empirical Study of the Collapsing Problem in Semi-Supervised

2D Human Pose Estimation

A. Other Attempts to Avoid Collapsing

The standard consistency-based method (Described in

Section 3.1 and 3.2) suffers from collapsing problem in 2D

pose estimation. In this section, we also investigate the ef-

fects of other factors like the number of labeled examples,

and unsupervised loss weight on the collapsing problem.

The following experiments show that adjusting these fac-

tors can Not fully solve the collapse problem. In all ex-

periments, the response to the unlabeled sample always has

a downward trend, and the final model accuracy is lower

than the initial supervised model. It is worth noting that the

augmentation parameters η and η′ are sampled in the same

distribution (See Section 3.1) in these experiments, and our

easy-hard augmentation strategy is not involved.

A.1. Decrease Unsupervised Loss Weight λ
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Figure 9. Effect of unsupervised loss weight λ. With small con-

sistency coefficient, the response for unlabeled examples still de-

creases but in a relatively slow speed.

The coefficient λ controls the importance of consistency

loss Lu. One possible opinion is that too large weight λ
leads to the instability in training process. The effect of de-

creasing λ is shown in Figure 9. λ = 1 is the default setting

and λ = 0 means that only supervised loss Ls is used. All

of these are trained with the same number of epochs. The

result indicates that lower coefficient slightly reduce the de-

gree of degradation but the degradation still happens. With

different coefficient values, the response and AP are always

worse than the supervised model.

A.2. Increase Labeled Examples

Labels Response AP Supervised AP
COCO 1K 0.0002 0.8 31.5

COCO 5K 0.0023 13.0 46.4

COCO 10K 0.0105 26.2 51.1

COCO 150K (Full) 0.0122 46.8 67.1

Table 9. Increasing the labeled examples do Not address the

collapsing problem. ”Supervised AP” represents the supervised

model using only labeled examples. Even with sufficient labels,

the SSL training still degrades the performance compared to su-

pervised model.

Another question is whether too few labels causes the

collapsing. As is shown in Table 9, with the increase of la-

bels, the validation performance has improved (From 0.8%

to 46.8%). However, It did not fully solve the collaps-

ing problem, as the response level is still low and perfor-

mance is degraded. The results indicate that the even un-

der a large number of labeled samples, consistency loss still

drives the network to generate low-response heatmap for

unlabeled examples, and finally degrade the generalization

performance of model. In contrast, our method can signif-

icantly improve the performance regardless of the number

of labeled examples.

B. Dual Networks
More details about dual networks, including the algo-

rithm flow, the motivation and advantages, are provided in

this part. In dual networks learning, we jointly learn two

networks fθ and fξ. We first train them separately on la-

beled images from different initialization. Then we jointly

train them on both labeled and unlabeled images. The Fig-

ure 10 demonstrates the framework of our method (dual net-

work) and Algorithm 1 describes the algorithm process.

In summary, for an unlabeled image. (1) First generate

easy augmentation Ie and hard augmentation Ih. (2) Then

the easy augmentation is fed into two networks to produce
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Figure 10. Framework of our Dual Networks Learning. Each of the two networks serves as both a teacher and a student. They take easy

and hard images when they are teachers and students, respectively.

targets Hθ,e, Hξ,e. (3) And the hard augmentation is used to

produce student predictions Hθ,h, Hξ,h. (4) The target Hθ,e

guides the prediction Hξ,h to optimize fξ. And the target

Hξ,e guides the prediction Hθ,h to update fθ.

Such a symmetrical structure is very simple, but has sev-

eral advantages. (1) It ensures that the teacher prediction

is statistically more accurate than the student prediction,

which avoid the collapsing problem. (2) The teacher and

student come from two different and independent networks,

which introduces a certain degree of divergence between

two models and boosts the final performance [3, 4]. (3)

The two networks can be updated and improved at the same

time, and no network will become the bottleneck. In fact,

the accuracy of two networks are very similar after training

if they use the same network structure.

C. Additional Experimental Results

C.1. Augmentation Hyper-Parameters

We study the effect of augmentation hyper-parameters in

this part. The dual networks (with ”easy-hard” augmenta-

tion method) is used as training method. The COCO 1K

subset is used as labeled set and COCO TRAIN is used as

unlabeled set. Joint Cutout and RandAugment are only used

in hard augmentation. The best value of hyper-parameters

is selected and used as the default setting.

Joint Cutout In Joint Cutout, m detected joints are ran-

domly selected to be masked. More masked regions will

increase the difficulty of prediction. We conduct experi-

ments to analyze the effect of hyper-parameter m. The ex-

periment (Figure 11) shows that m = 5 achieves the best

performance. Further increasing m can not boost accuracy,

which is maybe because the the remaining image region is

too small to have effective information for localization.

Algorithm 1 Dual Networks Learning

Input: L = {(Il,Hl)}Nl=1: Batch of labeled data.

Input: U = {Iu}Mu=1: Batch of unlabeled data.

Input: θ, ξ: Pre-trained model parameters

Output: θ, ξ: Updated model parameters

1: Ls = 0, Lθ = 0, Lξ = 0

2: for each (Il,Hl) ∈ L do
3: Calculate supervised loss

Ls = Ls + ||f(Ie, θ)−He||2 + ||f(Ie, ξ)−He||2,
4: end for
5: for each Iu ∈ U do
6: Randomly sample augmentations ηe and ηh

Ie = T (Iu, ηe), Ih = T (Iu, ηh)

7: Compute teacher predictions Hθ,e,Hξ,e by

Hθ,e = f(Ie, θ), Hξ,e = f(Ie, ξ)

8: Generate targets Te→h(Hθ,e), Te→h(Hξ,e)

9: Compute student predictions Hθ,h,Hξ,h by

Hθ,h = f(Ih, θ), Hξ,h = f(Ih, ξ)

10: Calculate unsupervised loss Lθ and Lξ by

Lθ = Lθ + ‖Hθ,h − Te→h(Hξ,e)‖2,
Lξ = Lξ + ‖Hξ,h − Te→h(Hθ,e)‖2

11: end for
12: Ltotal = Ls + Lθ + Lξ

13: update θ, ξ by minimizing Ltotal

Rand Augment We also study the effect of the distortion

magnitude [1] in RandAugment . Two augmentation trans-

formations are randomly sampled and applied sequentially.

The Figure 12 shows that the optimal magnitudes is 20. For

simplicity, the geometric transformations in RandAugment

like ”Rotate”, ”TranslateX”, etc. are excluded.



Table 10. The results on the VAL set of the MPII dataset. Our model is trained on the MPII TRAIN with labels and the AIC without labels.

We compare to a supervised baseline that is trained only on the MPII TRAIN. “Extra Labels” means we use the labels from the AIC dataset.

Method Backbone Extra Labels Head Shoulder Elbow Wrist Hip Knee Ankle Total Gain

SimpleBaseline [5] ResNet-101 � 97.1 94.9 88.1 82.5 87.7 83.2 79.2 88.1

SimpleBaseline [5] ResNet-101 � 97.3 96.2 91.1 86.9 89.3 87.9 83.8 90.8 2.7

Ours ResNet-101 � 97.1 96.1 90.4 85.0 89.2 86.1 81.7 89.8 ↑ 1.7
SimpleBaseline [5] ResNet-152 � 96.6 95.0 89.0 83.4 88.4 84.4 80.3 88.7

SimpleBaseline [5] ResNet-152 � 97.0 96.3 91.3 87.3 89.6 88.5 84.3 91.0 2.3

Ours ResNet-152 � 97.2 96.3 91.1 85.9 89.7 87.1 82.9 90.5 ↑ 1.8
HRNet [2] HRNet-W32 � 97.0 95.7 89.4 85.6 87.7 85.8 82.0 89.5

HRNet [2] HRNet-W32 � 97.4 96.7 92.1 88.4 90.8 88.6 85.0 91.7 2.2

Ours HRNet-W32 � 97.4 96.6 91.8 87.5 89.6 87.6 83.8 91.1 ↑ 1.6
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Figure 11. Effect of the number of masked regions in Joint Cutout.

The results show the randomly masking some joints in hard aug-

mentation help to improve the performance and m = 5 achieves

the best accuracy in this setting.
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Figure 12. Effect of the distortion magnitudes in RandAugment.

C.2. MPII Validation Dataset

We test our method (Dual) in a more realistic setting

where labeled and unlabeled images are from different

datasets of MPII and AIC, respectively. Table 10 shows the

results on the validation set of MPII. Our approach outper-

forms the supervised baseline [5] by a large margin on three

different backbones. After applying our method to utilize

unlabeled data, the error rate reduces by around 15%. It

is worth noting that performing supervised learning on the

combined MPII and AIC dataset with extra labels only gets

slightly better accuracy than our semi-supervised approach

which validates the effectiveness of our approach.
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