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1. Detailed Loss Formulation

Here we detail the losses used in our optimization
method. To obtain the physics losses we first must obtain
velocity and acceleration of our character. We use a finite
difference scheme that corresponds to implicit integration.

4 ~ (qer1 — qi) /At

Ge = (Ge41 — d4r) /AL

For the contact loss, we compute the contact variables
¢t using k1 and ko parameters. Here k1 controls the stiff-
ness of the contact. The higher it is, the closer the soft con-
tact loss approaches a hard step function corresponding to
contact complementarity constraint. Then ko is simply an
offset that ensures that ¢, ; = 0 when f; ; = 0. We employ
2 additional penalties that keep the contact forces physical.
First we penalize contact forces from violating the friction
cone constraint. We set the friction constant ;o = 1.0 (which
is a generous overestimate representing rubber on rubber
contact) and calculate the deviation from this.
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Here || indicates the component of force tangential to the
contact surface and L the normal force. The second one
is to prevent overly excessive contact forces that are unrea-
sonable for natural human motion. We set this to 8 times
the force required for an evenly balanced standing motion.
Since there are 8 foot contact points, each contact point
would hence be restricted to exert no more than the whole
body weight on its own. This means each foot can generate
total contact force of 4 times body weight which is similar
to highly dynamic dance motions.

We base L,s. on losses common to many body shape
estimation works [?].

Lfriction

Lpose = Lprio’r + LposeQd + LposeSd

Lyrior is the per-frame SMPL prior and is the log prob. of
a Gaussian Mixture Model over pose and L2 regularization
of the body shape parameter 3.
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Lyose24 1s error in pixel space, re-projecting our motion us-
ing true camera projection matrix P and uses robust loss
p 2]

LposeQd = w2dp(Pp - xpe,2D)

Lyose3q measures local keypoint 3d error where global root
position is subtracted out to obtain relative keypoint posi-
tions p,¢;. Here R is the camera extrinsic rotation.

Lpose3d = U)3d| |Rprel Sprel||2 + Wscale (S - 1)2

Since scale of the original 3d pose estimation is inherently
ambiguous, the scale parameter s is jointly optimized with
the motion which accounts for this ambiguity. The actual
scale of the character in our optimization will be adjusted
through the 3 shape parameters and informed through con-
tact geometry and motion (scale typically does not diverge
too much from 1). In our case the pose estimator we use
also emits a score representing the confidence in its estima-
tion (ranging from O to 1). In this case, we also weigh the
pose estimation losses per joint by this confidence.

We give weights for each of the losses in Table |

2. Rigid Body Human Body Model

We construct the body model out of geometric primitives
as shown in Figure 1. Mass and inertial properties are cal-
culated assuming constant density of 1000kg/m?.

Sizes of primitives are heuristically set and are (differ-
entiably) scaled in proportion to the lengths of the corre-
sponding bones of the skeleton resulting from the SMPL
body shape params (. Specifically, we scale box and sphere
primitives corresponding to foot, torso and head uniformly
in all 3d dimensions in proportion to the distance to the



Name Value
Wdynamics 50
We 200
We 50

kq 10
wy, 1
Wpen, 100
Wog le-3
wsq 0.5
Wscale le-3
wp 5e-3
WGMM 2.5e-3
w; 0.15
W le-4

Table 1. Table of constants used and their values.
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Figure 1. Body Model. Example geometry of our human body
model.

Method Feet Body Body-Align 1
[43] Physics (MTC) 508.7 499.8 421.9
[42] Physics (Our PE) 345.2 382.0 310.8

Ours (Kinematic) 251.0 190.1 114.6

Ours (Physics) 824 101.1 156.0

Table 2. Comparison with [43] on HumanEva dataset. Errors are
mean over time and measured in millimeters.

next child joint, whereas we scale the cylinders represent-
ing limbs only in the length-wise direction and maintain a
constant thickness. Admittedly, this does not fully capture
variation in human body shapes, as it does not distinguish
between characters with similar skeletons that differ in body
mass.

3. Additional Comparison

We adopt the same experimental setting presented
in [43]. Specifically we evaluate on the same 15 short (2
second) sequences extracted from the walking clips in the
HumanEva [45] dataset. Using the camera extrinsics given
in the dataset, we found that the ground had a slight z off-
set in the clips. We estimated a conservative 6cm offset for

all clips and applied our method with this elevated ground
plane. In [43], MTC is used as the pose estimator for the
initial motion. For fairer comparison, we also adapt a ver-
sion that uses the outputs of our pose estimator (Our PE)
instead. Note that unlike our method, [43] does not opti-
mize the shape of the body during optimization which can
lead to large errors especially in the depth of the root.

We present our results using the metrics reported in [43]
in Table 2. Here “Feet” measures the global position error
of the 2 feet joints. This especially highlights foot floating
and sliding artifacts. The “Body” metric measures whole
body global position error.

The metric “Body-Align 1” measures the average error
between the poses after aligning the 1st frame root position.
This metric is not very robust as it is quite sensitive to the
root position on the first frame. For example, if one motion
started with an error in the root position on the first frame
but later in the motion recovers from this error, it will be
penalized for the rest of the motion as the first frame is er-
roneously compensated for.

Our method greatly outperforms [43] in every pose ac-
curacy metric.

References

[1] Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. Struc-
tured prediction helps 3d human motion modelling. In ICCV,
2019.

[2] Kevin Bergamin, Simon Clavet, Daniel Holden, and
James Richard Forbes. Drecon: Data-driven responsive con-
trol of physics-based characters. ACM Trans. Graph., 38(6),
Nov. 2019.

[3] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Pe-
ter Gehler, Javier Romero, and Michael J. Black. Keep it
SMPL: Automatic estimation of 3D human pose and shape
from a single image. In Computer Vision — ECCV 2016,
Lecture Notes in Computer Science. Springer International
Publishing, Oct. 2016.

[4] M. A. Brubaker, L. Sigal, and D. J. Fleet. Estimating con-
tact dynamics. In [EEE 12th International Conference on
Computer Vision, pages 2389-2396, 2009.

[5] Simon Clavet. Motion matching and the road to next-gen
animation. Proceedings of GDC, 2016.

[6] E.Daneshmand, M. Khadiv, F. Grimminger, and L. Righetti.
Variable horizon mpc with swing foot dynamics for bipedal
walking control. IEEE Robotics and Automation Letters,
6(2):2349-2356, 2021.

[7] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-
tendra Malik. Recurrent network models for human dy-
namics. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV 15, page
4346-4354, USA, 2015. IEEE Computer Society.

[8] P. Ghosh, J. Song, E. Aksan, and Otmar Hilliges. Learning
human motion models for long-term predictions. 2017 In-
ternational Conference on 3D Vision (3DV), pages 458—-466,
2017.



(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard
Pons-Moll, and Christian Theobalt. Deepcap: Monocular
human performance capture using weak supervision, 2020.
I. Habibie, Daniel Holden, Jonathan Schwarz, Joe Yearsley,
and T. Komura. A recurrent variational autoencoder for hu-
man motion synthesis. In BMVC, 2017.

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow.
Moglow: Probabilistic and controllable motion synthesis us-
ing normalising flows. ACM Trans. Graph., 39(6), Nov.
2020.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6M: Large scale datasets and predic-
tive methods for 3D human sensing in natural environments.
TPAMI, 36(7):1325-1339, 2014.

Umar Igbal, Pavlo Molchanov, Thomas Breuel, Juergen
Gall, and Jan Kautz. Hand pose estimation via 2.5D latent
heatmap regression. In ECCV, 2018.

Umar Igbal, Pavlo Molchanov, and Jan Kautz. Weakly-
supervised 3d human pose learning via multi-view images
in the wild. In CVPR, 2020.

Umar Igbal, Kevin Xie, Yunrong Guo, Jan Kautz, and Pavlo
Molchanov. KAMA: 3d keypoint aware body mesh articula-
tion. In ArXiv, 2021.

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In CVPR, 2018.

Angjoo Kanazawa, Jason Y. Zhang, Panna Felsen, and Jiten-
dra Malik. Learning 3d human dynamics from video. In
Computer Vision and Pattern Recognition (CVPR), 2019.
Muhammed Kocabas, Nikos Athanasiou, and Michael J.
Black. Vibe: Video inference for human body pose and
shape estimation. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion
graphs. ACM Trans. Graph., 21(3):473-482, July 2002.
Taesoo Kwon, Yoonsang Lee, and Michiel Van De Panne.
Fast and flexible multilegged locomotion using learned cen-
troidal dynamics. ToG, 39(4):46-1, 2020.

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan
Popovié, and Zoran Popovié. Motion fields for interac-
tive character locomotion. ACM Trans. Graph., 29(6), Dec.
2010.

Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang,
and Cewu Lu. Hybrik: A hybrid analytical-neural inverse
kinematics solution for 3d human pose and shape estimation.
In CVPR, 2021.

Jiaman Li, Yihang Yin, H. Chu, Y. Zhou, Tingwu Wang, S.
Fidler, and H. Li. Learning to generate diverse dance motions
with transformer. ArXiv, abs/2008.08171, 2020.

Zongmian Li, Jiri Sedlar, Justin Carpentier, Ivan Laptev,
Nicolas Mansard, and Josef Sivic. Estimating 3d motion and
forces of person-object interactions from monocular video.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCYV, 2014.

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van
De Panne. Character controllers using motion vaes. ACM
Trans. Graph., 39(4), July 2020.

C. Liu and Sumit Jain. A quick tutorial on multibody dy-
namics. 2012.

Libin Liu, KangKang Yin, and Baining Guo. Improv-
ing sampling-based motion control. In Computer Graphics
Forum, volume 34, pages 415-423. Wiley Online Library,
2015.

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia
Shao, and Weiwei Xu. Sampling-based contact-rich motion
control. ACM Transactions on Graphics (TOG), 29(4):128,
2010.

Miao Liu, Dexin Yang, Yan Zhang, Zhaopeng Cui, James M.
Rehg, and Siyu Tang. 4d human body capture from egocen-
tric video via 3d scene grounding, 2020.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. SIGGRAPH Asia, 34(6):248:1-248:16,
2015.

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of
motion capture as surface shapes. In /ICCV, 2019.

Julieta Martinez, Michael J. Black, and Javier Romero. On
human motion prediction using recurrent neural networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, Weipeng Xu, Mohamed Elgharib, Pascal Fua,
Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, and
Christian Theobalt. Xnect. ACM Transactions on Graphics,
39(4), Jul 2020.

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran
Popovic, and Emanuel V. Todorov. Interactive control of di-
verse complex characters with neural networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015.

Igor Mordatch, Zoran Popovi¢, and Emanuel Todorov.
Contact-invariant optimization for hand manipulation. In
SIGGRAPH, pages 137-144, 2012.

Igor Mordatch, Emanuel Todorov, and Zoran Popovi¢. Dis-
covery of complex behaviors through contact-invariant opti-
mization. TOG, 31(4):1-8, 2012.

Igor Mordatch, Jack M Wang, Emanuel Todorov, and
Vladlen Koltun.  Animating human lower limbs using
contact-invariant optimization. In Siggraph Asia, 2013.
Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-
tion. Springer, New York, NY, USA, second edition, 2006.
Zherong Pan, Bo Ren, and Dinesh Manocha. Gpu-based
contact-aware trajectory optimization using a smooth force
model. In Proceedings of the 18th Annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
SCA ’19, New York, NY, USA, 2019. Association for Com-
puting Machinery.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
van de Panne. Deepmimic: Example-guided deep reinforce-



[42]

[43]

[44]

(45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

ment learning of physics-based character skills. ACM Trans-
actions on Graphics (TOG), 37(4):1-14, 2018.

Paul S. A. Reitsma and Nancy S. Pollard. Evaluating motion
graphs for character animation. ACM Trans. Graph., 26(4),
Oct. 2007.

Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan
Russell, Ruben Villegas, and Jimei Yang. Contact and human
dynamics from monocular video. In ECCV, 2020. 2

Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Chris-
tian Theobalt. Physcap: Physically plausible monocular 3d
motion capture in real time. ToG, 39(6), dec 2020.

Leonid Sigal, Alexandru O. Balan, and Michael J. Black.
HumanEva: Synchronized video and motion capture dataset
and baseline algorithm for evaluation of articulated human
motion. IJCV, 87(1):4-27, 2010. 2

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.
Neural state machine for character-scene interactions. ACM
Trans. Graph., 38(6), Nov. 2019.

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Za-
man. Local motion phases for learning multi-contact charac-
ter movements. ACM Trans. Graph., 39(4), July 2020.

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In CVPR, 2019.

Timo von Marcard, Roberto Henschel, Michael Black, Bodo
Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3d
human pose in the wild using imus and a moving camera. In
ECCV, 2018.

M. Vondrak, L. Sigal, and O. C. Jenkins. Physical simulation
for probabilistic motion tracking. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1-8, 2008.
Tingwu Wang, Yunrong Guo, Maria Shugrina, and Sanja Fi-
dler. Unicon: Universal neural controller for physics-based
character motion, 2020.

Alexander W Winkler, C Dario Bellicoso, Marco Hutter, and
Jonas Buchli. Gait and trajectory optimization for legged
systems through phase-based end-effector parameterization.
IEEE Robotics and Automation Letters, 3(3):1560-1567,
2018.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A
scalable approach to control diverse behaviors for physi-
cally simulated characters. ACM Transactions on Graphics
(TOG), 39(4):33—1, 2020.

Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan
Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin Yumer, and
Honglak Lee. Mt-vae: Learning motion transformations to
generate multimodal human dynamics. In European Confer-
ence on Computer Vision, pages 276-293. Springer, 2018.
Ze Yang, Siva Manivasagam, Ming Liang, Bin Yang, Wei-
Chiu Ma, and Raquel Urtasun. Recovering and simulating
pedestrians in the wild, 2020.

Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for
diverse human motion prediction. In ECCV, 2020.

Ye Yuan and Kris Kitani. Residual force control for agile
human behavior imitation and extended motion synthesis. In
NeurIPs, 2020.

(58]

[59]

[60]

[61]

Jason Y. Zhang, Panna Felsen, Angjoo Kanazawa, and Jiten-
dra Malik. Predicting 3d human dynamics from video. In
ICCV, 2019.

Yan Zhang, Michael J. Black, and Siyu Tang. We are more
than our joints: Predicting how 3d bodies move. In CVPR,
2021.

Tiancheng Zhi, Christoph Lassner, Tony Tung, Carsten Stoll,
Srinivasa G. Narasimhan, and Minh Vo. Texmesh: Recon-
structing detailed human texture and geometry from rgb-d
video. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision — ECCV 2020,
pages 492-509. Springer International Publishing, 2020.

Yi Zhou, Zimo Li, Shuangjiu Xiao, Chong He, Zeng Huang,
and Hao Li. Auto-conditioned recurrent networks for ex-
tended complex human motion synthesis. In International
Conference on Learning Representations, 2018.



