Supplementary Materials

1. Why Use Uncertainty for Self-supervised
MVS?

In Bayesian deep learning, the uncertainty is catego-
rized into two types [12]: aleatoric and epistemic uncertainty.
Aleatoric uncertainty models the inherent noise in the train-
ing data, and epistemic uncertainty accounts for what is not
included in the training data. As shown in Fig. a toy
example of aleatoric and epistemic uncertainty is provided.
In Fig. [I(a), aleatoric uncertainty models the regions which
have noisy labels. In Fig. [T(b), it shows that epistemic un-
certainty models what current model ignores, for example,
the regions without certain supervision or label.

In previous works [9, I1} [7, [L1]], self-supervised MVS
methods are built on intuitive assumptions, aiming at in-
volving extra priors into the self-supervision loss. It can
be further viewed as an attempt to increase the certain su-
pervision signals in self-supervision, which is proved by
extensive experiments to be effective. Whereas, from an
opposite viewpoint, we rethink the effect of uncertain su-
pervision signals modeled by epistemic uncertainty in this
work. Since epistemic uncertainty models the ignorance of
supervision, it can provide us a more comprehensive and
explainable understanding of self-supervision. In analogy
to the epistemic uncertainty in Fig. [T{b), the uncertainty in
self-supervision can guide our skepticism to the limitations
of current self-supervised MVS, which is further discussed
in the Introduction part of the manuscript.

2. Modified Backbone Network for Uncer-
tainty Estimation

In this section, we introduce the modified backbone
network for estimating the aforementioned aleatoric un-
certainty and epistemic uncertainty, following a classical
configuration proposed by [8]. As shown in Fig. the
illustration of the modified backbone architecture is pre-
sented. The aleatoric uncertainty map is directly predicted
by a 6-layer CNN, whose detailed architecture is further
listed in Table The epistemic uncertainty map is esti-
mated via a statistical Bayesian model by sampling 7" times.
Though traditional Bayesian models can offer a mathemat-
ically grounded framework to estimate model uncertainty,
they are usually attached with prohibitive computational

(a) Aleatoric Uncertainty (b) Epistemic Uncertainty

Figure 1. A toy example to understand aleatoric and epistemic un-
certainty.

cost. Hence, Monte-Carlo Dropout (MC-Dropout) [3]] at-
tempts to alleviate the huge cost in computation, casting
dropout training in deep neural networks as approximate
Bayesian inference in deep Gaussian process. In Monte-
Carlo Dropout, the inference is done by training a model
with dropout, and by also performing dropout at test time
to sample from the approximate posterior. Detailed theo-
retical evidence is also provided in [3]. Following an open
implementatio of [8]], we append dropout layers on the
bottleneck layers of the 3D U-Net in MVSNet [12] and
CascadeMVSNet [5], which are applied as backbone in our
proposed self-supervised MVS framework. If MVSNet is
applied as backbone, the MC-Dropout is embedded in the
3D U-Net of MVSNet, whose details are provided in Table
[ If CascadeMVSNet is applied as backbone, the modified
3D U-Net with MC-Dropout shares the same architecture as
Table 2] shows. Since CascadeMV SNet has multiple stages,
the MC-Dropout layers are only activated on the first stage.
Because too many dropout layers may result into strong reg-
ularization effect in self-supervised training, and make the
model trapped in a trivial solution. To guarantee the con-
vergence of self-supervised training in MVS, the number of
dropout layers is limited.

'https://github.com/pmorerio/dl-uncertainty
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Figure 2. Illustration of the modified architecture of backbone network for estimation aleatoric uncertainty and epistemic uncertainty.

Name Layer Output Size
Input - HxWx3
Conv_0 | ConvBR,K=3x3,S=1,F=16 HxWx16
Conv_1 | ConvBR,K=3x3,S=1,F=32 HxWx32
Conv_2 | ConvBR,K=3x3,S=1,F=128 | HxWx 128
Conv_3 | ConvBR,K=3x3,S=1,F=256 | HxW x256
Conv_4 | ConvBR,K=3x3,S=1,F=32 HxWx32
Conv_5 | Conv,K=3x3,S=1,F=1 HxWx1

Table 1. Network structure of the 6-layer CNN utilized to estimate
aleatoric uncertainty. Denote that 3D convolution as “Conv”, 3D
deconvolution as “DeConv”, batch normalization as “B”, ReLU as
“R” in the column of “Layer”. “K” is the kernel size, “S” is the
stride and “F” is the output channels. “H” and “W” represent the
height and width, respectively.

3. Implementation Details

Backbone: We directly adopt the concise open im-
plementations of MVSNef’] and CascadeMVSNef’| as the
bacbone in our porposed U-MVS framework. Following
the suggestions proposed by [8], the backbone architecture
is embedded with MC-Dropout and a 6-layer CNN for un-
certainty estimation, which is introduced in the previous
section. In default, the other network settings follow the
original open implementation.

RGB2Flow Module: In the RGB2Flow module, we uti-
lize a self-supervised methocﬂ to train an optical flow esti-
mation network, PWC-Net [10]], from the scratch on DTU
dataset. The two-view pairs for estimating optical flow are
selected by combining the reference view with each of the
source views in the multi-view pairs provided by MVSNet
[12]. After self-supervisedly pretraining the PWC-Net, it
is able to predict the optical flow from RGB images in the
RGB2Flow module. No extra ground truth is used in this

Zhttps://github.com/xy—-guo/MVSNet_pytorch

3https://github.com/alibaba/cascade-stereo/
tree/master/CasMVSNet

*https://github.com/11liuz/ARFlow

Name Layer Output Size
Input - HxWx32
Conv_0 ConvBR,K=3x3,S=1,F=8 HxWx8
Conv_1 ConvBR,K=3x3,S=2 F=16 H2xW/2x16
Conv_2 ConvBR,K=3x3,S=1,F=16 H/2xW/2x16
Conv_3 ConvBR,K=3x3,S=2,F=32 H/4XxW/4x32
Conv_4 ConvBR,K=3x3,S=1,F=32 H/4xW/4x32
Conv_5 ConvBR,K=3x3,S=2 F=64 H/8xW/8x 64
Conv_6 ConvBR,K=3x3,S=1,F=64 H/8xW/8x 64
Drop_6 Dropout,Rate=0.5 H/8xW/8x 64
Deconv_7 DeConvBR,K=3x3,S=2,F=32 | H/4xW/4x32
Drop_7 Dropout,Rate=0.5 H/4AxW/4x32
Shortcut_8 Deconv_7 + Conv4 H/4xW/4x32
Deconv_9 DeConvBR,K=3x3,S=2,F=16 | H2xW/2x16
Shortcut_10 | Deconv_9 + Conv2 H2xW/2x16
Deconv_11 DeConvBR,K=3 x3,S=2,F=8 HxWx8
Shortcut_12 | Deconv_11 + conv0 HxWx8
Conv_13 Conv,K=3x3,S=1,F=1 HxWx1

Table 2. Network structure of modified 3D U-Net in MVSNet,
embeded with Monte-Carlo Dropout to estimate epistemic uncer-
tainty. Denote that 3D convolution as “Conv”, 3D deconvolution
as “DeConv”, batch normalization as “B”, ReLU as “R” in the col-
umn of “Layer”. “K” is the kernel size, “S” is the stride, “F” is the
output channels and “Rate”” means the dropout rate. “H” and “W”
represent the height and width, respectively.

module.

Uncertainty Estimation:  As discussed in the
manuscript, MC-Dropout is only activated during es-
timating the uncertainty maps. We proceed the forward
propagation on the network with random MC-Dropout for
T = 20 times, which can be viewed as sampling T different
model weights. Following the procedure of [8], the mean
and variance of 71" sampled depth maps are respectively
treated as the pseudo label and uncertainty map, as shown
in Fig. 2]

Training and testing: The whole training process is
conducted on 4 RTX 2080Ti GPU. No ground truth depth
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\ DTU Intermediate of Tanks&Temples | Advanced of Tanks&Temples

Sup | Accuracy Completeness Overall | Precision Recall F-score Precision Recall F-score
v 0.325 0.385 0.355 47.62 74.01 56.84 29.68 35.24 31.12
X 0.354 0.3535 0.3537 45.45 78.52 57.15 24.22 44.46 30.97

Table 3. Performance comparison of our self-supervised method and supervised method on DTU evaluation set, intermediate and advanced
partition set of Tanks&Temples. CascadeMVSNet [5] is utilized as the backbone. Under the metrics of DTU benchmark, the smaller the
value the better the performance; Under the metrics of Tanks&Temples, the larger the value the better the performance.

maps are used in the training phaseﬂ In default, the hyper-
parameter settings for self-supervision follow the bconfigu-
ration of Unsup_-MVS [9]. In the training phase, the image
resolution is set to 640 x 512. Due to the limitation of mem-
ory, the batch size is set to 1 per GPU. The model is trained
on the DTU training set as [12]]. If MVSNet is selected
as backbone, the model is firstly trained for 10 epochs in
the self-supervision pretraining stage, and the model is fur-
ther trained for 10 epochs in the pseudo label post-training
stage. If CascadeMVSNet is selected as backbone, the self-
supervision pretraining stage requires 16 epochs for training
the model, and the pseudo label post-training stage requires
16 epochs for further training. We utilize Adam optimizer
with a learning rate of le-3 which is decreased by 0.5 times
every 2 epochs. In the testing phase, the depth maps on all
views of the scene are predicted. After depth estimation,
3D point cloud is reconstructed from the multi-view depth
maps and images [4]]. The test setting is also the same as the
aforementioned open implementations.

4. Discussion

4.1. Quantitative evaluation of uncertainty esti-
mates.

Ideally, the aforementioned uncertainty should be in-
versely correlated with accuracy. To provide a quantitative
evaluation of uncertainty estimates, we provide further ex-
perimental results in Fig. [3 following [6]. As suggested
by the authors, in order to assess the capability of the uncer-
tainty measure to predict whether a prediction is (in)correct,
the depth predictions on all pixels are ranked in decreasing
order of confidence. Then the per-pixel error rate of the
depth predictions are computed. As shown in the figure,
the abscissa represented the percentage of selected pixels
ranked by the uncertainty, which is also called “density”[6]].
The ordinate in the figure shows the absolute error rate of
the selected pixels according its density. It is noted that as
the density/uncertainty increases, the absolute error rate in-
creases as well. We can find that the aforementioned uncer-
tainty is inversely correlated with accuracy, which supports
the idea of rejecting invalid supervisions according to un-
certainty estimates.

5The code will be released on Github in the future

141
121
101

absolute error

N B O

0 20 40 60 80 100
depth map density / uncertainty

Figure 3. Quantitative evaluation results of uncertainty estimates.

4.2. Can Self-supervised Methods ‘“Outperform”
Supervised Methods?

In Table. we provide a direct comparison of our
proposed self-supervised MVS framework and supervised
method on several benchmarks with the same backbone of
CascadeMVSNet [5], such as DTU, intermediate and ad-
vanced partition in Tanks&Temples. On the third row of
Table [3] the performance of supervised method is picked
from the original paper and the official leaderboard of
Tanks&Temples. On the fourth row of Table[3] we provide
the performance of our proposed self-supervised method
under the same metrics. The performance of our proposed
unsupervised method on intermediatef| and advanced’] par-
tition of Tanks&Temples benchmark can be found on the
official website.

From the quantitative comparison in Table [3] we can
find: the Accuracy/Precison of supervised method is bet-
ter than our unsupervised method; Whereas, the Com-
pleteness/Recall of self-supervised method is better than
the supervised one; Moreover, the Overall/F-score of
self-supervised method is competitive with the supervised
method. It demonstrates that each of the supervised and
self-supervised methods has its own advantages. For super-
vised training, the results are more precise and accurate on
each point of the reconstructed 3D point cloud, compared
with self-supervised method. Because there is an inevitable
loss of detailed information in self-supervision signal built
upon cross-view correspondence between discrete pixels.

6The submission is named as 6956-ss-mvs-test on https://www.
tanksandtemples.org/leaderboard/IntermediateF/

"The submission is named as 6956-self-sup-mvs on https://www.
tanksandtemples.org/leaderboard/AdvancedF/
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For our self-supervised MVS framework, the advantage is
that the reconstructed 3D model can retain more integral
parts, compared with supervised training. It shows that our
self-supervised framework can excavate depth information
from abundant correspondence priors from the multi-view
images which can cover more integral parts of the 3D ob-
ject.

4.3. Visualization of the Reconstructed 3D Models

We visualize the reconstructed 3D point clouds from
DTU evaluation set and Tanks&Temples test set respec-

tively in Fig. 4] Fig. [5]and Fig. [

5. Limitations

1) The computation and time consumption for uncer-
tainty estimation is enormous. Though the MC-Dropout
can alleviate the prohibitive computational cost of Bayesian
model during estimating the uncertainty maps, it still re-
quires to sample 7' = 20 times, which means the model
is forward propagated for 20 more times. It shows that
the uncertainty estimation may be 20 times slower than a
normal forward propagation. As a result, the uncertainty
estimation phase of our proposed U-MVS framework may
be time-consuming. In future work, a fast and light-weight
method for uncertainty estimation is necessary.

2) Extension in a semi-supervised framework is ig-
nored. As discussed in Section [£.2] and Table [3] each of
the supervised method and our proposed self-supervised
framework has its own advantage: the supervised training
can reconstruct more accurate details of 3D model, whereas
self-supervised method can retain integral parts in 3D re-
construction, producing more complete results. The combi-
nation of these two methods may provide further improve-
ments in the performance of 3D reconstruction, such as
semi-supervised learning, in future works.
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Figure 4. Visualization of all scenes in DTU evaluation set.
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Figure 5. Visualization of all scenes on the intermediate partition of Tanks&Temples dataset.
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Figure 6. Visualization of all scenes on the advanced partition of Tanks& Temples dataset.



