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A1. Semantic Uncertainty Ellipsoid

The idea of a semantic uncertainty ellipsoid (SUE) is
borrowed from the error ellipsoid that is commonly used in
statistics, but we apply it to category-level pose estimation
for the first time. Given a library of K shapes of a category,
Bk, k = 1, . . . ,K, where each Bk 2 R3⇥N contains a list of
N semantic keypoints. For example, in the category of car,
Bk can be different CAD models from different car man-
ufacturers, with annotations of certain semantic keypoints
that exist for all CAD models, e.g., wheels, mirrors. Then
we build a SUE for the i-th semantic keypoint as follows.
We first compute the average position of the semantic key-
point as

bi =
1

K

KX

k=1

Bk(i), (A1)

where Bk(i) denotes the location of the i-th keypoint in the
k-th shape. We then compute the covariance matrix for the
i-th keypoint

Ci =
1

K

KX

k=1

(Bk(i)� bi)(Bk(i)� bi)
T
. (A2)

Using bi and Ci, we assume that the position of the i-th se-
mantic keypoint, denoted as xi, satisfies the following mul-
tivariate Gaussian distribution:

p(xi) =
exp

�
� 1

2
(xi � bi)TC

�1

i (xi � bi)
�

p
(2⇡)3 |Ci|

, (A3)

where |Ci| , det (Ci) denotes the determinant of Ci. Un-
der this assumption, it is known that the square of the Ma-
halanobis distance, i.e., (xi � bi)TC

�1

i (xi � bi) satisfies a
chi-square distribution with three degrees of freedom:

(xi � bi)
TC�1

i (xi � bi) ⇠ �
2

3
. (A4)

Therefore, given a confidence ⌘ 2 (0, 1), we have:

P
�
(xi � bi)

TC�1

i (xi � bi)  �
2

3
(⌘)
�
= ⌘, (A5)

where �
2
3
(⌘) corresponds to the probabilistic quantile of

confidence ⌘. This states that, with probability ⌘, the point
xi lies inside the 3D ellipsoid

(xi � bi)TC
�1

i (xi � bi)

�2
3
(⌘)

 1. (A6)

We call this ellipsoid the SUE with confidence ⌘, and in
our experiments we choose ⌘ = 0.5. Fig. A1 shows two
examples of category models with SUEs.

A2. Proof of Theorem 6

Proof. Results 1-6 are basic results in 3D geometry [2, 5]
that can be verified by inspection. We now prove 7 and 8.
The proof for 7 is based on [4], while the proof for 8 is new.

Point-Ellipsoid (PE). According to the definition of the
shortest distance (2), the point in the ellipsoid E(y,A) that
attains the shortest distance to x is the minimizer of the
following optimization:

min
z2R3

kz � xk2 (A7)

subject to (z � y)TA(z � y)  1. (A8)

Problem (A7) has a single inequality constraint and hence
satisfies the linear independence constraint qualification

(LICQ) [1]. Therefore, any solution of (A7) must satisfy
the KKT conditions, i.e. there exist (z,�) such that:

(z � y)TA(z � y)� 1  0 (A9)
� � 0 (A10)

rzL , 2(z � x) + 2�A(z � y) = 0 (A11)
�((z � y)TA(z � y)� 1) = 0 (A12)

where L , kz � xk2 + �((z � y)TA(z � y) � 1) is the
Lagrangian. Let zy , z � y,xy , x � y, the equations
above can be written as:

zT
yAzy � 1  0 (A13)

� � 0 (A14)
(�A+ I)zy = xy (A15)

�(zT
yAzy � 1) = 0 (A16)



(a) Chair in PASCAL3D+ [10].

(b) Car in FG3DCar [6].

Figure A1: Represent category models using a collection of
semantic uncertainty ellipsoids (SUEs).

Now we can discuss two cases: (i) if � = 0, then
from (A15), we have zy = xy , thus z = x attains the
global minimum kz � xk = 0 (the objective function is
lower bounded by 0). In order to satisfy feasibility (A13),
xT
yAxy  1 must hold and x has to belong to the ellipsoid;

(ii) if � > 0, then from (A16) we have zT
yAzy = 1 and

the optimal z lies on the surface of the ellipsoid. Because
� > 0 and A � 0, �A+ I must be invertible and eq. (A15)
yields:

zy(�) = (�A+ I)�1xy, (A17)

where we use zy(�) to indicate zy as a function of �. Sub-
stituting this expression into zT

yAzy = 1, we have that:

g(�) , zy(�)
TAzy(�)� 1 = 0. (A18)

To see how many roots g(�) has in the range � > 0, we
note:

g(� = 0) = xT
yAxy � 1 (A19)

g(� ! +1) = �1 (A20)

and compute the derivative of g(�):

g
0
(�) = 2z0

y(�)
TAzy(�)

= �2zy(�)
T
�
A(�A+ I)�1A

�
zy(�) < 0 (A21)

where z0
y(�), the derivative of zy(�) w.r.t. �, can be ob-

tained by differentiating both sides of eq. (A15) w.r.t. �:

Azy(�) + (�A+ I)z0
y(�) = 0 )

z0
y(�) = �(�A+ I)�1Azy(�). (A22)

The last inequality in (A21) follows from the positive defi-
niteness of the matrix A(�A + I)�1A. Eqs. (A19)-(A21)
show that the function g(�) is monotonically decreasing for
� > 0. Therefore, g(�) has a unique root in the range � > 0

if and only if g(0) > 0, i.e. xT
yAxy > 1. Lastly, to see the

solution is indeed a minimizer, observe that the Hessian of
the Lagrangian w.r.t. z is:

rzzL = 2(�A+ I) � 0, (A23)

which is positive definite, a sufficient condition for z to be a
global minimizer (because there is a single local minimizer,
it is also global), concluding the proof of 7.

We note that the proof above also provides an efficient
algorithm to numerically compute the root of g(�) = 0 and
find the optimal z, using Newton’s root finding method [8].
To do so, we initialize �0 = 0, and iteratively perform:

�k = �k�1 �
g(�k�1)

g0(�k�1)
, k = 1, . . . (A24)

until g(�k) = 0 (up to numerical accuracy). This algorithm
has local quadratic convergence and typically finds the root
within 20 iterations (as we will show in Section 4).

Ellipsoid-Line (EL). First we decide if the line inter-
sects with the ellipsoid. Since any point on the line L(y,v)
can be written as y+↵v for some ↵ 2 R, the line intersects
with the ellipsoid if and only if:

(y + ↵v � x)TA(y + ↵v � x) = 1 (A25)

has real solutions. Let yx , y � x, eq (A25) simplifies as:

(vTAv)↵2
+ (2yT

xAv)↵+ (yT
xAyx � 1) = 0, (A26)



where vTAv > 0 due to A � 0. The discriminant of the
quadratic polynomial is:

� = 2

q
(yT

xAv)2 � (vTAv)(yT
xAyx � 1). (A27)

Therefore, eq. (A26) has two roots (counting multiplicity):

↵1,2 =
�yT

xAv ±�

vTAv
(A28)

if � � 0, and zero roots otherwise. Accordingly, when
� � 0, the line intersects the ellipsoid and the entire
line segment y + ↵v : ↵ 2 [↵1,↵2] is inside the ellipsoid,
hence the shortest distance is zero.

On the other hand, when �↵ < 0, there is no intersec-
tion between the line and the ellipsoid, we seek to find the
shortest distance pair by solving the following optimization:

min
z2R3,↵2R

kz � (y + ↵v)k2 (A29)

subject to (z � x)TA(z � x)  1 (A30)

Similarly, problem (A29) satisfies LICQ and we write down
the KKT conditions:

(z � x)TA(z � x)  1 (A31)
� � 0 (A32)

rxL , 2(z � y � ↵v) + 2�A(z � x) = 0 (A33)
r↵L , 2vT

(↵v + y � z) = 0 (A34)
�((z � x)TA(z � x)� 1) = 0. (A35)

Let zx , z � x, we can simplify the equations above:

zT
xAzx � 1  0 (A36)

� � 0 (A37)
�
�A+ (I� vvT

)
�
zx = (I� vvT

)yx (A38)

�(zT
xAzx � 1) = 0, (A39)

where we have combined (A33) and (A34) by first obtain-
ing:

↵ = vT
(zx � yx), (A40)

from (A34) and then inserting it to (A33). Now we can
discuss two cases for the KKT conditions (A36)-(A39). (i)
If � = 0, then eq. (A38) reads:

(I� vvT
)(z � y) = 0, (A41)

which indicates that either z = y or z � y = kv for some
k 6= 0 (note that v is the eigenvector of I� vvT with asso-
ciated eigenvalue 0), which both mean that z lies on the line
L(y,v). This is in contradiction with the assumption that
there is no intersection between the line and the ellipsoid.
(ii) Therefore, � > 0 and zT

xAzx = 1. In this case, we

write V , I � vvT ⌫ 0. Since � > 0, A � 0, we have
�A+ V � 0 is invertible, and we get from (A38) that:

zx(�) = (�A+ V )
�1V yx. (A42)

Substituting it back to zT
xAzx = 1, we have that � must

satisfy:

g(�) , zx(�)
TAzx(�)� 1 = 0. (A43)

To count the number of roots of g(�) within � > 0, we note
that:

g(� ! 0+) = yT
xAyx � 1 > 0 (A44)

g(� ! +1) = �1 < 0 (A45)

where yT
xAyx > 1 because there is no intersection between

the line and the ellipsoid and y must lie outside the ellip-
soid. We then compute the derivative of g(�) w.r.t. �:

g
0
(�) = 2z0

x(�)
TAzx(�)

= �2zx(�)
TA(�A+ V )

�1Azx(�) < 0 (A46)

where z0
x(�) = �(�A+ V )

�1Azx(�) can be obtained by
differentiating both sides of eq. (A38) w.r.t. �. Eqs. (A44)-
(A46) show that g(�) is a monotonically decreasing func-
tion in � > 0, and a unique root exists in the range � > 0.
Finally, problem (A29) admits a global minimizer due to
positive definiteness of the Hessian of the Lagrangian.

The proof above suggests that we can also use Newton’s
root finding algorithm as in (A24) to compute the root of
g(�). To make sure g

0
(�) (eq. (A46)) is well defined at

�0, we initialize �0 = 10
�6 instead of �0 = 0 in the PE

case.

A3. Proof of Lemma 10

Proof. Let (xi,yi
) 2 (T ⌦ Xi, Yi)p be the two endpoints

of the shortest distance pair, we have that the cost function
of (1) is

PN
i=1

kxi � y
i
k2. On the other hand, the poten-

tial energy of the system is stored in the virtual springs asPN
i=1

k
2
kxi � y

i
k2, which equates the cost if k = 2.

A4. Proof of Theorem 11

Proof. Let X = {P (xi)}Ni=1
and Y = {P (yi)}Ni=1

be two
sets of 3D points, and with slight abuse of notation, we will
use xi 2 R3 and yi 2 R3 to denote the 3D points and
their coordinates interchangeably. Under this setup of Ex-
ample 1, problem (1) becomes

min
R2SO(3),t2R3

NX

i=1

kyi �Rxi � tk2 . (A47)

Let

x̄ =
1

N

NX

i=1

xi,xri = xi � x̄,J = �m

NX

i=1

[xri ]
2

⇥ (A48)



be the (initial) center of mass of X , relative positions of xi

w.r.t. center of mass, and moment of inertia of X . Accord-
ing to eq. (13), the total external force is

f 0
i = k(yi �Rqxri � xc)� µm(vc +Rq(! ⇥ xri))

f =

NX

i=1

f 0
i , (A49)

where k > 0 is the constant spring coefficient. Similarly,
according to eq. (14), the total torque in the body frame is

⌧ =

NX

i=1

xri ⇥ (RT
q f

0
i). (A50)

Now we analyze how many equilibrium points eq. (12) has.
Towards this goal, setting the first two equations of (12) to
zero, we get

vc = 0, ! = 0, (A51)

which implies that the system must have zero linear velocity
and angular velocity at equilibrium. Substituting (A51) to
the force and torque expressions in (A49) and (A50), we
have

f 0
i = k(yi �Rqxri � xc), (A52)

f = k

NX

i=1

yi �Rqxri � xc, (A53)

⌧ = k

NX

i=1

xri ⇥ (RT
q (yi �Rqxri � xc))

= k

NX

i=1

xri ⇥RT
q (yi � xc), (A54)

where we have used the equality that xri ⇥ xri = 0. Now
we set the last two equations of (12) to zero (i.e., the system
has no linear or angular acceleration), we have that

f = 0, ⌧ = 0, (A55)

which implies that external forces and torques must balance
at an equilibrium point. From f = 0 and the expression of
f in (A53), we obtain

NX

i=1

yi �Rqxri � xc = 0 =) (A56)

xc =
1

N

 
NX

i=1

yi �Rqxri

!
=

1

N

NX

i=1

yi := ȳ , (A57)

where we have used

1

N

NX

i=1

Rqxri =
1

N
Rq

NX

i=1

xri = 0 (A58)

from the definition of xri in (A48). Eq. (A57) states that
X and Y must have their center of mass aligned at an equi-
librium point. Now using a similar notation yri , yi � ȳ,
⌧ = 0 from eq. (A54) implies that

NX

i=1

xri ⇥RT
q yri = 0 . (A59)

Eq. (A57) and (A59) are the necessary and sufficient condi-
tion for an equilibrium point ṡ = 0. Now we are ready to
prove the four claims in Theorem 11. We first prove (ii).

(ii): Optimal solution is an equilibrium point. To
show the optimal solution of problem (A47) is an equilib-
rium point, we will write down its closed-form solution and
show that it satisfies (A57) and (A59).

Lemma A1 (Closed-form Point Cloud Registration). The

global optimal solution to (A47) is

t? = ȳ �R?x̄, (A60)
R?

= U+V
T
+
, (A61)

where U+,V+ 2 SO(3) are obtained from the singular

value decomposition:

M =

NX

i=1

yrix
T
ri
= USV T

, U ,V 2 O(3), (A62)

U+ = Udiag ([1, 1, det (U)]) 2 SO(3), (A63)
V+ = V diag ([1, 1, det (V )]) 2 SO(3). (A64)

Using U+,V+, we have M = U+S0V T
+

, with

S0
= diag ([s1, s2, s3det (UV )]) . (A65)

Lemma A1 is a standard result in point cloud registra-
tion [3, 7]. Using (t?,R?

), one immediately sees that the
center of mass of X is transformed to

xc = R?x̄+ t? = R?x̄+ ȳ �R?x̄ = ȳ (A66)

and coincide with ȳ, hence satisfies eq. (A57). Now replace
Rq with R?

= U+V T
+

in eq. (A59), our goal is to show

⌧ (R?
) ,

NX

i=1

xri ⇥ (V+U
T
+
yri) (A67)

equal to zero. Towards this goal, we will show each entry
of ⌧ (R?

) is zero, i.e., eTj ⌧ (R?
) = 0 for j = 1, 2, 3. Note



that

eT
1
⌧ (R?

) =

NX

i=1

eT
1
[xri ]⇥V+U

T
+
yri (A68)

=

NX

i=1

xT
ri
(e2e

T
3
� e3e

T
2
)V+U

T
+
yri (A69)

=

NX

i=1

tr
�
UT

+
yrix

T
ri
(e2e

T
3
� e3e

T
2
)V+

�
(A70)

= tr

 
UT

+

 
NX

i=1

yrix
T
ri

!
(e2e

T
3
� e3e

T
2
)V+

!
(A71)

= tr
�
UT

+
M(e2e

T
3
� e3e

T
2
)V+

�
(A72)

= tr
�
UT

+
U+S

0V T
+
(e2e

T
3
� e3e

T
2
)V+

�
(A73)

= tr
�
V+S

0V T
+
(e2e

T
3
� e3e

T
2
)
�

(A74)

= [V+S
0V T

+
]32 � [V+S

0V T
+
]23 = 0 (A75)

where the last “= 0” holds because V+S0V T
+

is an symmet-
ric matrix, and we have used the fact that

eT
1
[x]⇥ ⌘ xT

(e2e
T
3
� e3e

T
2
), 8x 2 R3

. (A76)

By the same token, one can verify that

eT
2
⌧ (R?

) = [V+S
0V T

+
]13 � [V+S

0V T
+
]31 = 0, (A77)

eT
3
⌧ (R?

) = [V+S
0V T

+
]21 � [V+S

0V T
+
]12 = 0. (A78)

Therefore, the optimal solution (t?,R?
) is an equilibrium

point of the system (12).
(i) and (iii): Three spurious equilibrium points.

We now show that besides the optimal equilibrium point
(t?,R?

), the equation (A59) has three and only three dif-
ferent solutions if s1 > s2 > s3 > 0, which we denote
as generic configuration. Towards this goal, let us assume
there is a rotation matrix Rq that satisfies (A59), and we
write it as

Rq = U+R̄V T
+
. (A79)

Note that such a parametrization is always possible with

R̄ = UT
+
RqV+ 2 SO(3). (A80)

Using this parametrization, ⌧ (Rq) = 0 is equivalent to

Z , V+R̄S0V T
+

(A81)

being symmetric (using similar derivations as in (A68)-
(A75)). Then it is easy to see that Z being symmetric
is equivalent to R̄S0 being symmetric because R̄S0

=

V T
+
ZV+. Explicitly, we require

R̄S0
= (R̄S0

)
T
= S0R̄T

. (A82)

Since s1 > s2 > s3 > 0, S0 is invertible and (S0
)
�1

=

diag ([1/s1, 1/s2, 1/s
0
3
]) with s

0
3
= s3det (UV ). There-

fore, R̄S0
= S0R̄T is equivalent to

R̄ = S0R̄T
(S0

)
�1 , (A83)

2

4
r11 r12 r13

r21 r22 r23

r31 r32 r33

3

5

| {z }
R̄2SO(3)

=

2

64
r11

s1
s2
r21

s1
s03
r31

s2
s1
r12 r22

s2
s03
r32

s03
s1
r13

s03
s2
r23 r33

3

75

| {z }
S0R̄T(S0)�1

.(A84)

Now we use
��� s1s2
��� ,
��� s1s03
��� ,
��� s2s03
��� > 1, and the fact that both

sides of (A84) are rotation matrices:

r
2

11
+ r

2

21
+ r

2

31
= r

2

11
+

✓
s1

s2

◆2

r
2

21
+

✓
s1

s0
3

◆2

r
2

31
= 1,(A85)

r
2

33
+ r

2

32
+ r

2

31
= r

2

33
+

✓
s2

s0
3

◆2

r
2

32
+

✓
s1

s0
3

◆2

r
2

31
= 1,(A86)

which implies that
 ✓

s1

s2

◆2

� 1

!
r
2

21
+

 ✓
s1

s0
3

◆2

� 1

!
r
2

31
= 0, (A87)

 ✓
s2

s0
3

◆2

� 1

!
r
2

32
+

 ✓
s1

s0
3

◆2

� 1

!
r
2

31
= 0, (A88)

and hence r21 = r31 = r32 = 0. Substituting them back
into (A84), we have r12 = r13 = r23 = 0. Therefore, we
conclude that R̄ is a diagonal matrix. However, there are
only four rotation matrices that are diagonal:

R̄1 = diag ([1, 1, 1]) , (A89)
R̄2 = diag ([1,�1,�1]) , (A90)
R̄3 = diag ([�1, 1,�1]) , (A91)
R̄4 = diag ([�1,�1, 1]) . (A92)

As a result, the equation (A59) has four and only four
solutions. Note that R̄1 = I3 corresponds to the opti-
mal equilibrium point R?, and the angular distance be-
tween R? and the other three spurious equilibrium points
U+R̄jV T

+
, j = 2, 3, 4 is:

�����arccos
 
tr
�
(R?

)
TU+R̄jV T

+

�
� 1

2

!�����

=

�����arccos
 
tr
�
V+UT

+
U+R̄jV T

+

�
� 1

2

!�����

=

�����arccos
 
tr
�
R̄j

�
� 1

2

!����� = ⇡. (A93)

(iv): Locally unstable spurious equilibrium points.
Lastly, we are ready to show that the three spurious



equilibrium points are locally unstable. Let the system
be at one of the three spurious equilibrium points s =

(ȳ,U+R̄jV T
+
,0,0), j = 2, 3, 4 with zero translational and

angular velocities (such that the total energy of the system
equals the total potential energy of the system due to zero
kinetic energy), and consider a small perturbation to the
equilibrium point:

s� = (ȳ,R�U+R̄jV
T
+
,0,0), (A94)

with a perturbing rotation R� 2 SO(3). The total (poten-
tial) energy of the system at s is

V (s) =
k

2

NX

i=1

��yi �U+R̄jV
T
+
xri � ȳ

��2 (A95)

=
k

2

NX

i=1

��yri �U+R̄jV
T
+
xri

��2 (A96)

=

:=Ez }| {
k

2

NX

i=1

kyrik
2
+

k

2

NX

i=1

kxrik
2 �

k

NX

i=1

tr
�
xT
ri
V+R̄jU

T
+
yri

�
(A97)

= E � ktr

  
NX

i=1

yrix
T
ri

!
V+R̄jU

T
+

!
(A98)

= E � ktr
�
U+S

0V T
+
V+R̄jU

T
+

�
(A99)

= E � ktr
�
S0R̄j

�
. (A100)

The total energy of the system at s� is

V (s�) =
k

2

NX

i=1

��yri �R�U+R̄jV
T
+
xri

��2 (A101)

= E � k

NX

i=1

tr
�
xT
ri
V+R̄jU

T
+
RT

�
yri

�
(A102)

= E � ktr

  
NX

i=1

yrix
T
ri

!
V+R̄jU

T
+
RT

�

!
(A103)

= E � ktr
�
U+S

0R̄jU
T
+
RT

�

�
(A104)

= E � ktr
�
S0R̄jU

T
+
RT

�
U+

�
. (A105)

Therefore, we have that the difference of energy from V (s)
to V (s�) is

V (s)� V (s�) = k
⌦
S0R̄j ,U

T
+
R�U+ � I3

↵
. (A106)

Using the Rodrigues’ rotation formula on R�:

R� = cos ✓I3 + sin ✓[u]⇥ + (1� cos ✓)uuT
, (A107)

where ✓ is the rotation angle and u 2 S2 is the rotation axis,
we have

UT
+
R�U+ � I3 =

(cos ✓ � 1)I3 + (1� cos ✓)UT
+
uuTU+ +

sin ✓UT
+
[u]⇥U+, (A108)

and the last term sin ✓UT
+
[u]⇥U+ is skew-symmetric.

Since S0R̄j is diagonal (and its inner product with any
skew-symmetric matrix is zero), we have

V (s)� V (s�) = k(1� cos ✓)
⌦
S0R̄j , zz

T � I3
↵

(A109)

= k(1� cos ✓)
�
zT

(S0R̄j)z � tr
�
S0R̄j

��
, (A110)

where we have denoted z , UT
+
u 2 S2. Now using the

expression for R̄j , j = 2, 3, 4, we have:

S0R̄2 = diag ([s1,�s2,�s
0
3
]) , (A111)

S0R̄3 = diag ([�s1, s2,�s
0
3
]) , (A112)

S0R̄4 = diag ([�s1,�s2, s
0
3
]) . (A113)

Hence, when j = 2, we choose z = [1, 0, 0]
T, so that

V (s)� V (s�) = k(1� cos ✓)(s2 + s
0
3
) > 0; (A114)

when j = 3, we choose z = [0, 1, 0]
T, so that

V (s)� V (s�) = k(1� cos ✓)(s1 + s
0
3
) > 0; (A115)

when j = 4, we choose z = [0, 0, 1]
T, so that

V (s)� V (s�) = k(1� cos ✓)(s1 + s2) > 0. (A116)

This implies that, in all three cases, there exist small rota-
tional perturbations with angle ✓ along axis U+z (recall that
z = UT

+
u), such that this small perturbation will cause a

strict decrease in the total energy of the system. As a result,
the system is locally unstable at the three spurious equilib-
rium points. Using Lyapunov’s local stability theory [9],
we know that, unless starting exactly at one of the spurious
equilibrium points, the system will never converge to these
locally unstable equilibrium points.

A5. Corner Cases of Point Cloud Registration

We show two examples of corner cases of point cloud
registration where the configuration is not general and vio-
lates the s1 > s2 > s3 > 0 assumption in Section A4, they
correspond to when there is no noise between X and Y and
both of them have symmetry.

When N = 3 (Fig. A2(a)), consider both X (blue) and Y
(red) are equilateral triangles with l being the length from
the vertex to the center. Assume the particles have equal
masses such that the CM is also the geometric center O, and
all virtual springs have equal coefficients. X is obtained



from Y by first rotating counter-clockwise (CCW) around
O with angle ✓, and then flipped about the line that goes
through point 1 and the middle point between point 2 and
3. We will show that this is an equilibrium point of the dy-
namical system for any ✓. When the CM of X and the CM
of Y aligns, we know the forces fi, i = 1, 2, 3 are already
balanced. It remains to show that the torques ⌧i, i = 1, 2, 3

are also balanced for any ✓. ⌧1 and ⌧3 applies clockwise
(CW, cyan) and the value of their sum is:

k⌧1 + ⌧3k = k⌧1k+ k⌧3k (A117)
= kl

2
(sin ✓ + sin�) (A118)

= kl
2

✓
sin ✓ + sin

✓
✓ +

2⇡

3

◆◆
(A119)

= kl
2
sin

⇣
✓ +

⇡

3

⌘
, (A120)

and ⌧2 applies CCW (green) and its value is:

k⌧2k = kl
2
sin↵ = kl

2
sin

✓
2⇡

3
� ✓

◆
(A121)

= kl
2
sin

⇣
✓ +

⇡

3

⌘
. (A122)

Therefore, the torques cancel with each other and the con-
figuration in Fig. A2(a) is an equilibrium state for all ✓.
However, it is easy to observe that this type of equilibrium
is unstable because any perturbation that drives point 2 out
of the 2D plane will immediately drives the system out of
this type of equilibrium. When N = 4, one can verify that
same torque cancellation happens:

k⌧1k = kl
2
sin� = kl

2
sin

⇣
✓ +

⇡

2

⌘
(A123)

= kl
2
sin

⇣
⇡

2
� ✓

⌘
= kl

2
sin↵ = k⌧3k, (A124)

and the system also has infinite locally unstable equilibria.

A6. Extra Experimental Results

Mesh registration. Fig. A3 shows the translation error
of DAMP compared with SDR [2] on varying noise levels, as
well as the relative duality gap of SDR. Because the rela-
tive duality gap of SDR is numerically zero, we can say that
SDR finds the globally optimal solutions in all Monte Carlo
runs. Then we look at the translation error boxplot and ob-
serve that DAMP always returns the same solution as SDR,
which indicates that DAMP always converges to the optimal
solution.

Robot primitive registration. Fig. A4 plots the rotation
error, translation error and runtime of DAMP on registering a
noisy point cloud observation to the robot primitive includ-
ing planes, spheres, cylinders and cones, under increasing
noise levels, where 1000 Monte Carlo runs are performed
at each noise level. We find that DAMP always returns an
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Figure A2: Examples of symmetric point clouds: (a) an
equilateral triangle and (b) a square. The dynamical system
has infinite equilibrium points.
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Figure A3: Translation estimation error of DAMP compared
with the certifiably optimal SDR solver [2] on random prim-
itive registration with increasing noise levels. Right plot
shows the relative duality gap computed from SDR, which
certifies that both DAMP and SDR attains the globally opti-
mal solution.

accurate pose estimation, even when the noise standard de-
viation is 2 (note that the scene radius is 10), strongly sug-
gesting that DAMP always converges to the optimal solution.
Moreover, DAMP has a runtime that is below 1 second (re-
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Figure A4: Rotation error, translation error and runtime of DAMP on aligning point cloud observation to the robot primitive
model (c.f . Fig. 1(b) in main text) under increasing noise levels. Although there is no guaranteed globally optimal solver to
verify DAMP’s optimality, the accurate estimations strongly indicate DAMP’s global convergence (1000 Monte Carlo runs per
noise level).

call that our implementation is in Matlab with for loops,
because DAMP is a general algorithm that checks the type of
the primitive for each correspondence).

References

[1] S. Boyd and L. Vandenberghe. Convex optimization. Cam-
bridge University Press, 2004. 1

[2] Jesus Briales and Javier Gonzalez-Jimenez. Convex Global
3D Registration with Lagrangian Duality. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2017. 1,
7

[3] Berthold K. P. Horn. Closed-form solution of absolute orien-
tation using unit quaternions. J. Opt. Soc. Amer., 4(4):629–
642, Apr 1987. 4

[4] Yu N Kiseliov. Algorithms of projection of a point onto an
ellipsoid. Lithuanian Mathematical Journal, 34(2):141–159,
1994. 1

[5] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi,
and Leonidas J Guibas. Supervised fitting of geometric prim-
itives to 3d point clouds. In IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), pages 2652–2660, 2019. 1
[6] Yen-Liang Lin, Vlad I. Morariu, Winston H. Hsu, and

Larry S. Davis. Jointly optimizing 3D model fitting and fine-
grained classification. In European Conf. on Computer Vi-

sion (ECCV), 2014. 2
[7] F. L. Markley. Attitude determination using vector observa-

tions and the singular value decomposition. The Journal of

the Astronautical Sciences, 36(3):245–258, 1988. 4
[8] Jorge Nocedal and Stephen J. Wright. Numerical Opti-

mization. Springer Series in Operations Research. Springer-
Verlag, 1999. 2

[9] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear

control, volume 199. Prentice hall Englewood Cliffs, NJ,
1991. 6

[10] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond
PASCAL: A benchmark for 3d object detection in the wild.
In IEEE Winter Conference on Applications of Computer Vi-

sion, pages 75–82. IEEE, 2014. 2


