
Progressive Seed Generation Auto-encoder
for Unsupervised Point Cloud Learning (Supplementary)

1. Implementation Details
Here we provide some specific implementation details of our architecture in Section 3.2 of the paper. We set the number of

input points N to 2048, which has been commonly used in previous studies. We implement PointNet++ [17] as our encoder,
with the same structure as the original paper. Therefore, the encoder samples the input point cloud into 512 and 128 points and
finally transforms it to create a 1024-dimensional feature vector. We added one fc layer to convert this into a 512-dimensional
θ′. Our decoder consists of one SGM and three SFPMs, followed by point generation layers, which finally generates a
(32 × 64 = 2048) × 3 point cloud as the output. Each convolutional layer in the SGM has output channel dimensions of
512, 256, 128, 64, and 48. The size of the feature map becomes (512 × 1 × 1) (θ′) → (512 × 3 × 3) → (256 × 6 × 6)
(Seed 1)→ (128 × 12 × 12) (Seed 2)→ (64 × 24 × 24) (Seed 3)→ (48 × 48 × 48) (Seed 4). The 1 × 1 conv layers in
the SFPM have an output channel dimension of 256, and in the point generation layers, the interpolation layer changes the
spatial size of (48 × 48) to (32 × 64). The 1 × 1 conv layer outputs 256-channel features and the last fc layer outputs 3D
point coordinates.

2. Point Cloud Upsampling
In decoder ablation, we perform point cloud upsampling by setting the number of output point clouds to 6400 and show

the examples with the original output results in Figure 1. It can be seen that Decoder C32 produces a result that is the closest
to the ground truth than other decoders and produces a more clear, uniform output.

3. Ablation Models
For better understanding, we visualize architectures of the decoders used in analytical study. Figure 2 depicts four De-

coders, A, B, C2, and C32. We ensure that the analysis was performed under the same conditions by unifying the structure
of the encoder and decoder except for the part that generates U ′.

4. Qualitative Comparison
We present additional qualitative results on point cloud reconstruction. For comparison, we visualize the results of 3D-

PointCapsNet [34] and our results in Figure 3. To create the results of 3D-PointCapsNet, we used publicly available code and
pre-trained weights provided by the authors1. Figure 3 shows that our method generally produces output with lower noise
and better detail than 3D-PointCapsNet.

1https://github.com/yongheng1991/3D-point-capsule-networks

1



Input Decoder A Decoder B Decoder C32

Figure 1. Examples of point cloud reconstruction and upsampling on ShapeNetCorev2 with various decoders for analysis. The images in
the first, third, fifth, and seventh lines show the reconstruction results, and the images in the second, fourth, sixth, eighth lines show the
results of the upsampling.

2



Figure 2. Overall architectures of the trained networks for analysis.

3



Figure 3. Examples of point cloud reconstruction results on ShapeNetCore13.

4


