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This document provides supplementary materials that
are not included in the main manuscript due to space con-
straints. It consists of three parts including more details
of our proposed network structure (Section A), more ex-
perimental results (Section B), and the analysis of using
DGCNN [9] as the point cloud encoder (Section C).

A. Network Architecture
As described in Section 4.1 of the main manuscript, our

network training consists of two phases including an unsu-
pervised feature learning phase and a linear classifier train-
ing phase. For unsupervised feature learning, we use DG-
GNN [9] as our encoder E(.), and use the decoder of Fold-
ingNet [10] as our decoder D(.). The inputs of DGCNN and
FoldingNet are N×3 matrices that are composed of 3D po-
sitions (x, y, z). While the inputs to our network consist of
both 3D positions (x, y, z) and color information (r, g, b)
with a N × 6 matrix, we double the size of each network
layer. Fig. 1 shows the detailed architecture for the unsu-
pervised feature learning.

Following previous works on unsupervised action recog-
nition [1, 2, 3], we place a linear classifier f(.) (with 3 FC
layers) on top of the encoder to perform action recognition.
Fig. 2 shows the network architecture.

Under the unsupervised setting, after the encoder has
been trained via unsupervised feature learning (shown in
Fig. 1), we then train the linear classifier only, and keep
the encoder frozen (shown in Fig. 2). Under the semi-
supervised and supervised settings, the encoder is first
trained via unsupervised feature learning, and then fine-
tuned together with the linear classifier.

B. Additional Results
B.1. Transfer Learning across Different Datasets

To further evaluate whether the proposed skeleton col-
orization method is able to gain knowledge to related tasks,
we investigate the transfer learning performance of our
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model. Generally, the representations learned from the
large-scale dataset are more generalizable. Therefore, in our
experiments, we first train our proposed unsupervised repre-
sentation learning method on the large-scale NTU RGB-D
dataset in the unsupervised learning stage and then fine-tune
the whole framework on the NW-UCLA dataset in the clas-
sifier training stage. We name the aforementioned proce-
dure as ‘NTU Unsup-pretrain’. We evaluate transfer learn-
ing performance using the classification accuracy of action
recognition on the NW-UCLA dataset and compare the re-
sults with those trained in full supervised manner without
unsupervised pre-training on NW-UCLA (Sup-baseline).

Table 1. Comparison of the transfer learning performance.
(‘TS’:Temporal Stream, ‘SS’:Spatial Stream)

Models Sup-baseline NTU Unsup-pretrain
NW-UCLA (‘TS’) (%) 90.5 93.3
NW-UCLA (‘SS’) (%) 88.3 90.6

Table 1 shows the transfer learning results. Our self
supervised model (NTU Unsup-pretrain) outperforms the
supervision baseline (Sup-baseline), improving the result
from 90.5% to 93.3% on temporal colorization stream
(‘TS’) and 88.3% to 90.6% on the spatial colorization
stream (‘SS’), respectively.

Noted that, in order to make the input data of NW-UCLA
dataset the same size as that of NTU RGB-D dataset, we did
some interpolation and zero-padding. So the baseline model
results are different with that in Tab 7 of our paper.

B.2. Effectiveness of Our unsupervised representa-
tion learning

To verify the effectiveness of our unsupervised represen-
tation learning strategy on all three learning settings includ-
ing unsupervised learning, semi-supervised learning, and
fully-supervised learning. We compare our method with
the model that training from scratch (E(.) + f(.)) on the
NTU-CV ‘temporal-stream’. As shown in the Table 2, our
method outperforms E(.) + f(.) by large margins, demon-
strating the effectiveness of our proposed learning strategy.



Figure 1. Details of our network architectures. Figure (a) shows the framework of unsupervised feature learning, where the input is the
raw skeleton cloud or partially colorized skeleton cloud, and the output is the repainted skeleton cloud. (n is the number of points) Figure
(b) shows details of the EdgeConv Unit that is used in Figure (a). The input of EdgeConv is a tensor with shape n× i, and the output is a
tensor with shape n× o. (n is the number of points, i and o denote the dimensions of input and output features per point, respectively.)

Figure 2. The framework of linear classifier training. The encoder is pre-trained in the unsupervised feature learning phase as illustrated
in Fig. 1. The encoder is then frozen under the unsupervised setting, and it is fine-tuned together with the linear classifier under the
semi-supervised and supervised settings.(n is the number of points, c is the number of action categories.)

Table 2. Comparisons between the model learning with unsuper-
vised representation and model learning from scratch.

NTU-CV TS Unsup Semi-10 Semi-20 Semi-40 Sup
E(.) + f(.) 75.7 68.9 74.2 78.6 88.0
Ours 79.9 73.3 77.9 82.7 93.1

B.3. Ablation Study on Colorized Point Ratios

As described in Section 3.3 of the main manuscript, we
uniformly sampled half of points in the raw skeleton cloud
Pr and attach them with color information for balancing
the color repainting and unsupervised feature learning. We
perform an ablation study that employs different ratios of
color labeled points (which are uniformly sampled from all
points) as the encoder’s input under the unsupervised setting
as shown in Fig. 3. The black point in the input means that
this input point is not assigned with color, i.e., the point is
represented as [x, y, z, 0, 0, 0]. For the colorized point, the
point is represented as [x, y, z, r, g, b].

Table 3. Action recognition results achieved by our method when
different ratios of the input skeleton cloud points are given color
information for unsupervised feature learning, on the NTU RGB-
D dataset. (‘TS’:Temporal Stream; CS: cross subject protocol)

Ratio of colorized points in input (%) 100 75 50 25 0
NTU-CS (‘TS’ Colorization) (%) 67.5 70.0 71.6 70.1 65.7

Table 3 shows experimental results with the cross-
subject protocol on NTU RGB-D dataset [5] while using
temporally colorized skeleton cloud as self-supervision. We
can observe that our method using partially colorized skele-
ton cloud (75%, 50%, or 25%) as input significantly out-
performs the alternatives that use fully colorized skeleton
cloud (100%) or uncolored raw skeleton cloud (0%) as in-
put for unsupervised feature learning. It can be seen that
using 50% colorized skeleton cloud as input performs the
best. We therefore assign half of the input points with the
colorized labels, as described in the last paragraph of Sec-
tion 3.3 in our main manuscript.



Table 4. Comparisons of action recognition results with semi-supervised learning approaches on NW-UCLA dataset. (‘TS’:Temporal
Stream; U:Unsupervised; Semi:Semi-supervised; The number after ‘Semi’ stands for the percentage of labeled training data.)

SOTA Method U Semi-1 Semi-5 Semi-10 Semi-15 Semi-30 Semi-40
P&C FW-AEC [7] 84.9% – – – – – –
MS2L [2] – 21.3% – 60.5% – – –
ASSL [6] – – 52.6% – 74.8% 78.0% 78.4%

Our ‘TS’ Colorization (Pointnet++) 85.8% 38.9% 52.7% 69.1% 69.6% 79.7% 81.2%
Our ‘TS’ Colorization (DGCNN) 90.1% 40.6% 55.9% 71.3% 74.3% 81.4% 83.6%

Figure 3. The pipeline of our unsupervised feature learning: The
encoder’s input is skeleton cloud with different ratios of color la-
beled points (e.g., 0%, 50%, or 100%; the black points in the input
means that they are not colorized). The targeted decoder output is
100% colorized skeleton cloud. Our goal is to leverage color in-
formation as self-supervision to drive the encoder-decoder to learn
representative features from the input data. For example, in the
temporal colorization, the input partial colorized skeleton cloud
is repainted to be fully colorized, where the self-supervision sig-
nal drives the encoder-decoder to learn temporal order informa-
tion and temporal dependencies between frames. Similarly, in the
spatial stream, the self-supervision signal of spatial colorization
drives the encoder-decoder to learn each point’s spatial order in-
formation and the spatial relationship between joints. As such, in
both the temporal and spatial levels, these self-supervision signals
encourage the encoder to learn effective features, which represent
spatial-temporal information useful for action recognition.

This coloring strategy has two advantages. First, using
50% colored skeleton cloud as input for fully colorization
can facilitate repainting and achieve efficient training (for
unsupervised repainting) as compared with using 100% raw
cloud pr. Note the encoder-decoder still needs to learn to re-
construct the temporal/spatial color of the 50% uncolored
frames in the input, hence temporal/spatial information is
modeled during this unsupervised training. Second, the in-
put in evaluations is also 50% colored skeleton cloud with
partial yet useful temporal/spatial information. Feeding it
to the trained encoder thus enables more effective action

recognition.

C. Choice of Encoder Framework

We investigated two popular point cloud classification
networks as the encoder E(.) of our network, namely,
PointNet++ [4] and DGCNN [9]. PointNet++ has a hierar-
chical structure, which segments a point cloud into smaller
clusters. DGCNN performs hierarchical operations by se-
lecting a local neighbor in the feature space instead of the
point space, hence each point may have different neighbor-
hoods in different network layers.

We compare these two encoder architectures over NW-
UCLA [8] under the unsupervised and semi-supervised set-
tings. As shown in Table 4, using DGCNN performs bet-
ter than using PointNet++ under all settings. We therefore
use DGCNN [9] as the encoder as described in the main
manuscript. Note that though PointNet++ performs worse
than DGCNN, its performance is still better than the state-
of-the-art (except on Semi-15 setting), demonstrating the
effectiveness of our proposed method.
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