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A. Evaluation Results on MegFace.
We report the results on the MegFace dataset in Tab. 2.

Compared with LFW and MegFace has more gallery im-
ages over 50k+ images. This large-scale challenging dataset
results in more difficult targeted identity protection on the
whole.

B. Batch Analysis on MMD Optimization.
Tab. 1 shows results on different batch sizes w.r.t natu-

ralness. It can be seen that the evaluation of visual quality
becomes stable as the batch size exceeds 50. We set batch
size as 50 in this paper. For single image crafting, we have
two choices. The first one is self augmentation including ro-
tation, projective, brightness and transformations; The sec-
ond one is collecting some irrelevant images to form a batch
just for optimal results in the phase of MMD optimization.

10 20 30 40 50 60 70 80 90
SSIM 0.8518 0.8392 0.7592 0.7021 0.6759 0.6765 0.6633 0.6649 0.6674
PSNR 28.71 28.55 26.95 26.02 25.55 25.63 25.40 25.50 25.54

Table 1. The mean PSNR (db) and SSIM for different batch sizes
based on CosFace.

C. Comparison Experiments about Target Im-
ages.

Different numbers of targets. As illustrated in Fig. 1,
we study the effect of different numbers on the black-box
identity protection. The curve first rises and finally ap-
proaches the steady. Therefore, appropriate increases in the
number of targets is beneficial to performance improvement
against black-box models.

Generated images as targets. To further verify that our
algorithm does not depend on the selection of targets, we
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Figure 1. The perturbation vs. numbers of targets curve of face
identification models against black-box identity protection. Mo-
bileFace is a surrogate white-box model.

specify some generated images from StyleGAN [1] as target
images, which is illustrated as Fig. 2. We use these gener-
ated images as target images and set the same other setting
with above experiments. Tab. 3 shows Rank-1-T, Rand-1-
UT, Rank-5-T and Rank-5-UT of black-box attacks against
CosFace, SphereFace, FaceNet, ArcFace, MobileFace and
ResNet. The results show that our algorithm still has excel-
lent black-box performance of identity protection. In prac-
tical applications, we can arbitrarily specify the available
and authorised target identity set or some generated facial
images, and our algorithm is applicable to any target set.

Figure 2. Examples of some generated images from StyleGAN.
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Figure 3. More examples for different perturbations under the l∞ norm by existing adversarial methods.
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Table 2. Rank-1-T and Rank-5-T (%) of black-box attacks against CosFace, SphereFace, FaceNet, ArcFace, MobileFace and ResNet on
MegFace. ∗ indicates white-box attacks.

ArcFace MobileFace ResNet50 SphereFace FaceNet CosFace
Rank-1-T 12.2 32.4 29.2 27.4 28.2 49.6
Rank-5-T 30.4 52.2 54.8 56.4 53.8 70.0

Rank-1-UT 89.0 73.8 49.6 60.8 54.2 95.0
Rank-5-UT 82.0 55.8 31.6 41.8 34.8 93.6

Table 3. Results of black-box attacks against SphereFace, FaceNet,
ArcFace, MobileFace, ResNet and CosFace when treating the gen-
erated images as the target images.

D. Ill-suited ℓp-norm perturbation in Face en-
cryption

Face encryption focuses on generating adversarial iden-
tity masks that can be overlaid on facial images without
sacrificing the visual quality. As illustrated in Fig. 3, al-
though the adversarial perturbations generated by the ex-
isting attack methods, e.g., PGD and MIM, have a small
intensity change (e.g., 12 or 16 for each pixel in [0, 255]),
they may still sacrifice the visual quality for human percep-
tion due to the artifacts. ℓp-norm adversarial perturbations
can not naturally fit human perception well, which also ac-
cords with [4, 2]. Thus proposed TIP-IM introduces a better
multi-target optimization mechanism to improve effective-

ness and Lnat in the objective of Eq. (2) to generate more
natural images.
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