Training Multi-Object Detector by
Estimating Bounding Box Distribution for Input Image
— Supplimentary Meterial —

1. Details of MDOD

MDOD with static size input: For training MDOD with
static size input, we use the stochastic gradient descent op-
timization with a learning rate of 0.005 and a momentum
factor of 0.9. The learning rate is decayed at epochs 120 and
150 with a decay rate of 0.1, and the network is trained up
to 160 epochs. Here, the batch size is 32. Gradient clipping
[3] is applied with a cutoff threshold of 7.0. We perform the
generally used data augmentation process: the expansion,
cropping and the horizontal flip described in [2]. These are
the same processes used in EfficientDet.

MDOD with variable size input: For training MDOD
with variable size input (short-800), we use the ADAM op-
timizer [1] with a learning rate of 0.001. The learning rate is
decayed at epoch 60 and 65 with a decay rate of 0.1. MDOD
is trained up to 70 epoch and the batch size is 20. Unlike
static size input setting, Gradient clipping is not applied.
We apply the same augmentation strategies used in Reti-
naNet, and FCOS: the horizontal flip, and the scale jitter.
For a fair comparison with the methods using ‘short-800’
such as RetinaNet, and FCOS, MDOD network uses the
10 convolution layers that have 256 channels, when using
‘short-800° input. This is the same number of convolutions
with RetinaNet, FCOS, and etc.

2. Considerations for fair comparison with
Baselines

We came up with our own baseline detector model be-
cause the variables of each detector such as batch size, aug-
mentation methods, network architecture and so on are so
much different from detector to detector. We found it very
hard to conduct fair and proper comparisons between vari-
ous detectors due to these variables. Therefore, we designed
our own baseline model with our own controlled variables
so that we could perform fair experiments for compari-
son. The baseline model and MDOD share completely the
same batch size, augmentation strategy, and network archi-
tecture except the output layer. Then, we tuned our base-
line model by trying different hyper-parameters (positive-

negative ratio, loss weight between regression and classifi-
cation, weight-decay and learning rate) and tried to find the
best parameters that show the best results for the baseline
model (30.1 AP when using ResNet50 and 320x320 size
input image).

3. Future Works and Broader Impacts

Modeling the distribution of bounding boxes: Which
density model is used to estimate the probability distribu-
tion is an important thing in terms of density estimation.
Changing the density model may cause practical and theo-
retical differences. For example, in our paper, the mixture
model using the Cauchy distribution as a component shows
higher detection performance (AP) than the Gaussian mix-
ture model. Like this, in our framework, detection perfor-
mance may vary depending on which model the distribu-
tion of the bounding box is estimated through, and there is
a large room for performance improvement, depending on
the design of the model.

Likelihood for any bounding box: In the previous meth-
ods, we can only know the class probability of the predicted
bounding boxes. But we cannot obtain the statistical infor-
mation of any bounding box that is not included in the set of
predicted bounding boxes. However, in MDOD, the proba-
bility density function is cleary defined. We can get the like-
lihood for any bounding boxes from this probability density
function of the mixture model estimated by MDOD. That
is, we can obtain the likelihood of the bounding box for an
arbitrary object by calculating the probability density func-
tion. This unique characteristic helps the analysis of the ob-
ject detector, and opens up the possibility of applications to
other fields, such as knowledge distillation in object detec-
tion. Also, by itself, this characteristic can be utilized as a
function that receives a query bounding box from the user
and returns the statistical information of it.

4. Pseudo-code

def mdod_training procedure(mu, gamma, prob, pi, gt_box, gt_label, fg th=0.5, roi_ratio=3):
{mu: (X, 4), gamma: (K, 4), prob: (K, #class), pi: (X, 1)}: network predictions.
{gt_box: (#GT, 4), gt label: (#GT, #class)}: ground truth annotations.
fg th: foreground threshold.

roi_ratio: the number of Rol per ground truth annotation.

calculate moc loss

p-cau = cauchy_pdf (gt_box, mu, gamma) # (#GT, K)
p-moc = sum(pi * p_cau, dim=1) # (#GT)

moc_loss = -log(p-moc)

roi sampling

nroi = n_gt * roi_ratio

roi box = sampling from mu pi(mu, pi, n=n_roi) # (#RoI)
iou_pair = calculate_iou(roi_box, gt_box) # (#RoI, #GT)
max_iou, max_idx = max(iou_pair, dim=1) # (#RoI), (#RoI)
bg-idx = get_background idx(max_iou < fg_threhsold) # (#Rol)
roi_label = gt_label[max_idx] # (#Rol)

roi_label[bg_idx] = 0.0

calculate mm loss

p-cau_roi = cauchy_pdf(roi_box, mu, gamma) # (#RoI, K)

p-cat_roi = category.pmf(roi_label, prob) # (#Rol, K)

pomm = sum(pi.detach() * p_cauroi.detach() * p_cat_roi, dim=1) # (#Rol)
mm_loss = -log(p._mm)

return moc_loss, mm_loss

Figure 1: Pytorch-like pseudocode for the training procedure of MDOD.

References

[1] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[2] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. In European conference
on computer vision, pages 21-37. Springer, 2016. 1

[3] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In Inter-
national conference on machine learning, pages 1310-1318,
2013. 1

