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1. Analysis of the Decay Rate of ∥f∗i,j∥
According to the analysis in Section 3.2.2 as well as the

translation invariance of the Hadamard product, ∥f∗i,j∥ can
be formulated as Eq. 1, where ERF is a 2D Gaussian func-
tion.

∥f∗i,j∥ ∝
∑

tri,j(ERF)⊙ (x̂− x̃)

=
∑

(ERF)⊙ tr−i,−j(x̂− x̃) (1)

Similar to Section 3.2.3, we consider one spatial dimen-
sion and one channel for ERF and (x̂ − x̃) without loss of
generality, because any 2D Gaussian function with the co-
variance matrix of rank r can be regarded as a linear com-
bination of r multiplications of two 1D Gaussian functions.
As such, denote σ as the variance of the ERF. The lower and
upper boundary for the mask of the patch M is denoted as
A−B and A+B respectively, where A is the center of the
patch. Then, ERF and (x̂ − x̃) can be formulated as Eq. 2.

ERF =
1√
2πσ

exp(− i2

2σ2
)

(x̂− x̃) =

B∑
m=−B

x∗
A+mδ(i−A−m)

(2)

As such, we can get ∥f∗i ∥ as Eq. 3. It can be observed that
∥f∗i ∥ is spatially distributed as a weighted sum of Gaussian
functions of the same variance σ but different centers A+m.

∥f∗i ∥ =
∑

(ERF)⊙ tr−i(x̂− x̃)

∝
B∑

m=−B

x∗
A+mexp(− (i−A−m)2

2σ2
) (3)
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Figure 1. (a) Curve of the mean value and standard deviation of
∥f∗i,j∥ with the relative location ∥(i, j)− A∥ of the adversarial
patch, which is the result of normalizing Fig. 2 (b) of our paper
to the input size. (b) Curve of − log ∥f∗i,j∥ with ∥(i, j) − A∥2,
which is an illustration of DR.

Then we compare the decay rate of ∥f∗i ∥ from center A
with the Gaussian functions. Formally, we calculate the de-
cay rate as Eq. 4. Thus, the corresponding infinite signal
of ∥f∗i ∥ has the same squared exponential decay rate as the
Gaussian functions when |i − A|/B → +∞. This means
that if the size of the image is far larger than the size of the
patch, ∥f∗i ∥ decays like Gaussian in the region of the image.

DR = lim
|i−A|

B →+∞

log ∥f∗i ∥
(i−A)2

= lim
|i−A|

B →+∞

1

(i−A)2
(log(

B∑
m=−B

x∗
A+mexp(

− (i−A)2 +m2 − 2m(i−A)

2σ2
)) + Const)

= − 1

2σ2
+ lim

|i−A|
B →+∞

1

(i−A)2
log(

B∑
m=−B

x∗
A+m

exp(
m2

2σ2
)exp(

m(i−A)

σ2
)) = − 1

2σ2
(4)

We extend the experiments in Section 3.2.2 to show the
decay rate as in Fig. 1. It can be observed that in a con-



siderable range of distance, − log ∥f∗i,j∥ and ∥(i, j) − A∥2
is approximately linear, validating that ∥f∗i,j∥ has a squared
exponential decay rate. But the decay rate slows down when
the distance becomes quite large. It is probably because the
∥f∗i,j∥ becomes too small, making its value vulnerable to
accidental errors.

2. Detailed Deduction to o−1[i]

According to the definition of the z-transformation [2],
the system function O−1(z) for the inverse system can be
formulated as Eq. 5, where S is the size of the convolution
kernel, −B = argminmw[m] ̸= 0 is the lower boundary of
the convolution kernel in space, and {vs}Ss=1 are the poles
of O−1(z) which is the set of real numbers and conjugate
complex number pairs.

O−1(z) =
1

O(z)
=

1∑
m w[m]z−m

=

1
w[−B]z

−B∏S
s=1(1− vsz−1)

,

(5)
We consider that there are no high order poles in the fol-

lowing deduction which generally holds, and discuss the
high order poles afterward. Since O−1(z) is a rational
proper fraction of z−1, it can be expanded in a partial frac-
tion expansion as is shown in Eq. 6.

O−1(z) =

S∑
s=1

qs
1

1− vsz−1
=

S∑
s=1

qsOs(z),

where qs = O−1(z)(1− vsz
−1)|z=vs . (6)

So o−1[i] can be regarded as the linear combination of
unit impulse responses of system functions with each pole.
For infinite bilateral signals, there are two possibilities for
the unit impulse response of system function Os(z) =
1/(1−vsz

−1). One is right-sided sequence os[i] = vs
iu[i],

while the other is left-sided sequence os[i] = −vs
iu[−i−1].

The difference of them is that they have different region of
convergence (ROC) in z-plane, with |z| > |vs| for the right-
sided sequence and |z| < |vs| for the left-sided sequence.

Notice that not both of the possible unit impulse re-
sponses os[i] are suitable for being the part of the inverse
system of a convolution layer. Obviously, the output of the
inverse system is the input features of the convolution layer,
so the system should be Bounded-In-Bounded-Out (BIBO)
stable, which requires the ROC including the unit circle.
Seen from another perspective, the actual feature map is fi-
nite, so when os[i] is divergent, it cannot satisfy the bound-
ary conditions. Thus, for |vs| ≤ 1, the right-sided sequence
is chosen, while for |vs| > 1, we choose the left-sided se-
quence, as is shown in Fig.2 (a). As a result, each BIBO
stable os[i] has a unilateral exponential decay, and o−1[i] is
their linear combination as is in Eq. 7. For poles with order
j, the possible unit impulse responses are the multiplication
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Figure 2. (a) An example of the unit impulse response of a 1D
convolution system as well as its possible inverse systems. From
top to bottom are the original convolution system, the BIBO stable
inverse system, and the unstable inverse system. (b) The curve of
the estimated average decay radius of the inverse system with
the size of the original 1D convolution kernel.

of the possible unit impulse responses of the first order pole
and a polynomial with order j−1. So the BIBO stable os[i]
has the same unilateral exponential decay as that of first or-
der poles.

o−1[i] =

S∑
s=1

qsos[i],

os[i] =

{
vs

iu[i] |vs| ≤ 1

−vs
iu[−i− 1] |vs| > 1

s.t. O−1(z) =
1∑

m w[m]z−m
=

S∑
s=1

qs
1

1− vsz−1
(7)

We further study the decay radius with the size of
the convolution layer S using the Monte Carlo algorithm,
where each w[m] is randomly chosen from a standard nor-
mal distribution. Fig.2 (b) illustrates the results. It can be
observed that the estimated decay radius is approximately
linear with the size of convolution, which means that the in-
verse system of a convolution layer has a similar locality to
the original layer.

3. Comparison between Gray-box and White-
box Attack

In our paper, all the experimental results are reported un-
der the pure white-box adversarial attack, which takes the
defending approaches into consideration when training the
adversarial patch. But the experiments in the original papers
of some previous works e.g. DW and LGS are tested under
the gray-box attack, where the adversarial patch is gener-
ated to attack the original model. We have analyzed why
we choose the pure white-box attack in our paper, and here
we compare the performance of different defending meth-
ods under gray-box and white-box LaVAN attacks on Ima-
geNet in Table 1.



Table 1. Clean and adversarial Acc for different defending methods evaluated on different target models gray-box and white-box LaVAN
attacks on ImageNet. The best results are marked as bold.

ResNet-50 Inception-V3 MobileNet-V2
Defense Clean Gray White Clean Gray White Clean Gray White
PatchGuard Window=4 67.0% 34.1% 31.6% 74.8% 28.8% 23.3% 63.0% 31.5% 27.4%
DW 42.4% 63.8% 32.7% 35.6% 67.7% 30.2% 38.0% 50.4% 23.1%
LGS 69.8% 58.7% 0.6% 75.0% 70.5% 1.7% 65.3% 55.6% 11.5%
Ours α = 1.0 72.4% 65.0% 58.3% 71.6% 67.5% 58.8% 64.1% 56.2% 52.0%
Ours α = 1.1 73.3% 66.7% 59.5% 74.3% 69.4% 59.0% 65.5% 56.7% 48.9%

Figure 3. Adversarial patches targeting ImageNet class
‘toaster’. From left to right are patches generated by LaVAN
on ResNet-50 without defense, Inception-V3 using LGS and
MobileNet-V2 with FNC respectively.

It can be observed in Table 1 that the performance of our
method as well as PatchGuard keeps stable under gray-box
and white-box attack. The difference between our method
and PatchGuard is that our method performs significantly
better than PatchGuard in both situations. For comparison,
the performance of the detection-based DW and LGS drops
dramatically from the gray-box attack to white-box attack,
revealing that they only focus on the difference between the
patch generated by one specific kind of attack and the be-
nign regions, which is not essential for the success of the
attack. Similar results have also been reached in previous
researches [1]. Interestingly, the adversarial Acc of DW
under gray-box attack is even significantly higher than the
clean Acc. It is because the adversarial patch generated by
gray-box attack is more salient than the benign salient re-
gions, leading to the latter not being detected and thus im-
proving the accuracy. However, the difference in salience
is not essential for distinguishing the patch and the benign
salient regions, so DW is far less effective under white-box
attack.

We then elaborate the attack method in testing the effec-
tiveness of different defending methods as a supplement to
the experimental setup in our paper. The original Adver-
sarial Patch (AdvP) as well as the LaVAN method are used
to generate adversarial examples and lead to similar results.
The patches are applied on random location of the image
and takes up 5% of total image pixels on ImageNet and 10%
on CIFAR10. The target class is toaster for ImageNet and
dog for CIFAR10 without instruction. Fig. 3 shows some
examples of the generated patch on ImageNet.

Figure 4. Adversarial patches of different shapes targeting Im-
ageNet class ‘toaster’.

4. Patches of Other Shapes
We have verified the effectiveness of our method against

rectangle patches of different aspect ratios in Section 4,
then we generate adversarial patches of other shapes and
test the performance of our method against them. Circular
patch, triangular patch and star-shaped patch are adopted as
is shown in Fig. 4. LaVAN attack with the 5% patch for
ResNet-50 on ImageNet is employed here.

Table 2. Adversarial Accs for patches of different shapes.
Shape Square Circle Triangle Star
Acc 58.3% 59.2% 62.4% 57.3%

As is shown in Table 2, the adversarial Acc keeps sta-
ble across different shapes of adversarial patches with a
variance of 5.1%, indicating the robustness of our method
against different shapes of the patch.

5. More Visualization Results of Feature Norm
Maps

We provide more visualization results of feature norm
maps here to illustrate the impact on feature maps of our
method. Firstly, we compare the norm of feature vectors in
intermediate feature maps for adversarial examples on mod-
els with/without FNC. We choose the same clean images
with adversarial patches on the same locations for a better
comparison. The adversarial patches are generated by the
white-box LaVAN attack targeting ResNet-50 with/without
FNC respectively on ImageNet.

The results for ResNet-50 with/without FNC are illus-
trated in Fig. 5 and Fig. 6 respectively, where the feature
norm maps on the same layer of different models are nor-
malized to the same scale. It can be observed from Fig. 5



Figure 5. Feature norm maps of ResNet-50 without FNC. From left to right are the input images, feature norm maps on Conv2-3,
Conv3-4, Conv4-6 and Conv5-3.

Figure 6. Feature norm maps of ResNet-50 with FNC. From left to right are the input images, feature norm maps on Conv2-3, Conv3-4,
Conv4-6 and Conv5-3 after FNC. The suppression of feature norms by FNC is shown compared to Fig. 5.



Figure 7. Visualizations of the FFM norm map before/after
FNC for clean and adversarial images on ResNet-50 with FNC.
The input image in first two rows are adversarial images, while the
input of the third row is a clean image.

Figure 8. Visualizations of the FFM norm map before/after
FNC for clean and adversarial images on Inception-V3 with
FNC. The input image in first two rows are adversarial images,
while the input of the third row is a clean image.

that the model without FNC focuses more on the features of
the patch since they propagate on very shallow layers. The
relative norm of feature vectors on the corresponding loca-

Figure 9. Visualizations of the FFM norm map before/after
FNC for clean and adversarial images on MobileNet-V2 with
FNC. The input image in first two rows are adversarial images,
while the input of the third row is a clean image.

tion of the patch becomes larger and larger in forward prop-
agation, and eventually dominates in classification. How-
ever in the model with FNC, as is shown in Fig. 6, the norm
of the feature vectors on different locations in shallow lay-
ers are more similar to each other, and the model focuses
more on the benign object in deep layers. As such, the im-
pact of the patch on feature maps is suppressed, leading to
correct classification results.

Furthermore, we extend the visualizations of the FFM
norm map before/after FNC for clean and adversarial im-
ages on model with FNC to different CNN architectures.
Fig. 7, Fig. 8 and Fig. 9 are the results on ResNet-50,
Inception-V3 and MobileNet-V2 respectively. It can be ob-
served from the FFM norm maps that FNCs successfully
suppress the large norm feature vectors in both clean and
adversarial images and decrease the variance of the norm of
feature vectors, as is analyzed in Section 4.
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