
WaveFill: A Wavelet-based Generation Network for Image Inpainting

1. Appendix Outline
We provide more details on experimental settings, de-

tailed WaveFill network architecture, more experimental re-
sults, and more ablation studies in the ensuing 4 sections.

2. Detailed Experimental Settings
Image Processing: We fix the image resolution at 256×

256. Specifically, we use small images (256 × 256) of
Places2 [13] and resize CelebA-HQ [2] images to 256×256.
For Paris StreetView [7] images (936 × 537), we crop
patches of 537 × 537 from the image center and then re-
size the cropped patches to 256 × 256. Given a raw im-
age Igt and its mask M (0 for valid pixels and 1 for in-
valid) of the target size, the input image is obtained by
Iin = Igt ⊙ (1 − M), where ⊙ is element-wise product.
The WaveFill generator takes [Iin,M ] as inputs and pro-
duces the prediction Ipred in the spatial domain. The final
output is Iout = Iin + Ipred ⊙M .

Ablation Study Settings: In the ablation studies pre-
sented in the submitted manuscript, the baseline adopts a
U-Net-like architecture [8] for image inpainting in spatial
domain. It uses multiple residual blocks (as in the low-
frequency branch of WaveFill generator) between the CNN
encoder and decoder, and replaces all vanilla convolution
by gated convolution [11]. For a fair comparison, it also
performs feature fusion by concatenating low-level features
from encoder with up-sampled high-level features from de-
coder followed by a gated convolution.

For DCT-based model, we apply Discrete Cosine Trans-
form (DCT) to the entire image. As illustrated in Fig. 1, we
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Figure 1. Illustration of frequency separation over the resultant
frequency bands with DCT.

Frequency
Bands GMCNN [10] EC* [6] GC [11] Ours

Low 9.03 9.97 8.99 9.76
High 43.86 39.60 43.42 30.81

Table 1. Histogram differences as measured by Earth Mover’s
Distance (EMD) between the prediction and ground truth (over
CelebA-HQ [2] validation set with square masks).

split frequency bands into one low-frequency band and two
high-frequency bands. We then concatenate the 3 square
patches of high-frequency bands in the channel dimension,
and obtain similar inputs as the wavelet-based model. With
the frequency domain inputs, we adopt the same network
structure of WaveFill to train the DCT-based model.

3. Detailed Network Architectures
The discriminators D1 and D2 share the same struc-

ture for the predictions of Lv1-HighFreq and Lv2-HighFreq.
Fig. 4 shows detailed discriminator structure. For the gener-
ator in WaveFill, Fig. 5 shows it detailed architecture where
the IDWT part is not included for brevity.

4. More Experimental Results
Inter-Frequency Conflicts: As most state-of-the-art

(SOTA) inpainting methods optimize different objectives
in spatial domain concurrently, which often leads to inter-
frequency conflicts and compromised inpainting. To visual-
ize and quantify the inter-frequency conflicts, we compute
the histogram of low-frequency and high-frequency com-
ponents of SOTA predictions (as illustrated in Fig. 1 of the
submitted manuscript) and measure their differences with
that of ground truth via Earth Mover’s Distance (EMD) [9].
In particular, the inpainting prediction is decomposed into
LL,LH,HL, and HH with 1-level wavelet decomposition
where LL is treated as low-frequency bands and the rest
are assembled and treated as high-frequency bands. Table 1
shows the EMD over the validation set of CelebA-HQ [2].
It can be found that WaveFill achieves comparable EMD on
low-frequency bands but outperforms SOTAs significantly
on high-frequency bands. The EMD statistics show that
separate generation of different frequency bands with corre-
sponding objectives helps to produce better high-frequency
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Mask EC [6] MEDFE [5] Ours

FID↓

10-20% 20.46 14.79 12.22
20-30% 35.09 27.77 21.98
30-40% 49.43 43.02 34.02
40-50% 62.03 64.98 46.50

ℓ1(%) ↓

10-20% 1.16 1.02 1.04
20-30% 2.01 1.78 1.63
30-40% 2.94 2.76 2.37
40-50% 4.10 4.14 3.34

PSNR↑

10-20% 30.81 32.80 32.79
20-30% 27.87 29.07 29.86
30-40% 25.76 26.31 27.72
40-50% 24.09 23.73 25.78

SSIM↑

10-20% 0.948 0.965 0.966
20-30% 0.905 0.929 0.938
30-40% 0.848 0.869 0.894
40-50% 0.778 0.790 0.839

Table 2. Quantitative experimental results over Paris StreetView
[7] validation images (100) with irregular masks [4].

distributions and thus more realistic inpainting.
Quantitative Results: Table 2 shows the quantitative

results over the Paris StreetView [7] with irregular masks
[4] (no space to report it in the submitted manuscript). For
small masks with mask ratios of 10-20%, WaveFill achieves
superior FID scores and fair ℓ1, PSNR, and SSIM as perfor-
mance saturates over these three metrics. For larger and
more challenging irregular masks, WaveFill outperforms
the state-of-the-art [6, 5] consistently by large margins.

Qualitative Results:
Fig. 2 illustrates our synthesized multi-frequency com-

ponents and their histograms. In addition, we compare
WaveFill with a number of state-of-the-art methods [10, 6,
11, 5] qualitatively. Figs. 6, 7 and 8 show the inpainting
of a few more sample images from CelebA-HQ [2], Places2
[13] and Paris StreetView [7], respectively.

Failure Case Analysis: Similar to existing work like
EC [6] and GC [11], our method sometimes fails to gen-
erate reasonable semantics while handling large corrupted
regions as shown in Fig. 3. This happens more for Places2
dataset [13] that captures thousands of objects and scenes
of different types. The failure is largely attributed to the in-
sufficient contextual information (around the corrupted re-
gions) with which the model cannot recognize the semantics
and produce reasonable contents.

5. More Ablation Studies

Decomposition Levels: We studied different levels of
wavelet decomposition over Paris StreetView [7] with ir-
regular masks. As Table 3 shows, 2-level wavelet decom-
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Figure 2. WaveFill inpainting vs GT in multi-frequency bands
and histograms of inpainting regions (highlighted by the red box).
The above sample is from Places2 [13] and the below one is from
CelebA-HQ [2].
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Figure 3. Failure cases from Places2 [13] (above) and CelebA-HQ
[2] (below).

position (ours) performs better than 1-level decomposition
in most metrics except PSNR, which could be because 1-
level decomposition does not disentangle low and high-
frequency information sufficiently and so may still suffer
from inter-frequency conflicts. 3-level decomposition per-
forms worse than 2-level decomposition as well largely due
to the increased complexity in generation. As we adopt
the image size 256 × 256, the size of low-frequency bands
is only 32 × 32 (in 3-level decomposition) which contains
very limited information for guiding the generation of high-
frequency contents.

Wavelet Filters: We adopted the Haar wavelet filter as
the basis for the wavelet transform. To investigate the ef-
fects of wavelet filters over the inpainting performance, we



FID↓ ℓ1(%) ↓ PSNR↑ SSIM↑
Lv1 Wavelet 33.23 2.41 29.04 0.900
Lv3 Wavelet 34.36 2.48 28.49 0.898

Lv2 Wavelet 31.02 2.34 28.94 0.904

Table 3. Ablation study of different wavelet decomposition levels
over Paris StreetView [7] validation images (100) with irregular
masks [4].

FID↓ ℓ1(%) ↓ PSNR↑ SSIM↑
only LowFreq 62.32 3.77 25.84 0.820
w/o Lv2-HighFreq 54.48 4.18 23.26 0.784
w/o Lv1-HighFreq 42.25 2.80 27.87 0.882

Full 31.02 2.34 28.94 0.904

Table 4. Ablation study of frequency component over Paris
StreetView [7] validation images (100) with irregular masks [4].

evaluated another two types of wavelet filters including db2
from the Daubechies wavelet family and bior2.2 from the
biorthogonal wavelet family. Table 5 shows experimental
results. It can be seen that the three types of wavelet filters
achieve comparable inpainting performance under different
evaluation metrics.

Frequency Component: The WaveFill generator con-
sists of three branches for processing 3 frequency bands
LowFreq, Lv2-HighFreq and Lv1-HighFreq. We trained
three models to study the effects of the three branches:
1) Removing both high-frequency branches with only
LowFreq; 2) Removing intermediate-frequency branch
Lv2-HighFreq; 3) Removing high-frequency branch Lv1-
HighFreq. As shown in Table 4, removing lower frequency
bands Lv2-HighFreq leads to more FID drops as compared
with removing Lv1-HighFreq, and the model with only
LowFreq obtains the lowest FID. But for ℓ1, PSNR and
SSIM, removing Lv2-HighFreq affects more as compared
with using LowFreq only. We conjecture that Lv1-HighFreq
will be like noise when directly adding to LowFreq without
the support of intermediate-frequency bands Lv2-HighFreq.

Loss Term Sensitivity: The complete WaveFill involves
4 losses in training. We performed ablation studies to exam-
ine the contribution of each loss by removing it from the full
objectives. As shown in Table 6, each loss has its contribu-
tion to the overall performance, and Lperc contributes the
most.

Filter FID↓ ℓ1(%) ↓ PSNR↑ SSIM↑
db2 32.12 2.35 28.96 0.904

bior2.2 31.18 2.36 29.06 0.903

haar 31.02 2.34 28.94 0.904

Table 5. Ablation study of wavelet filters over Paris StreetView [7]
validation images (100) with irregular masks [4].

FID↓ ℓ1(%) ↓ PSNR↑ SSIM↑
w/o LLF 31.93 2.36 28.81 0.902
w/o LG 32.12 2.34 28.85 0.903
w/o LFM 31.66 2.36 28.66 0.901
w/o Lperc 41.40 2.63 27.56 0.886

Full 31.02 2.34 28.94 0.904

Table 6. Ablation study of loss terms over Paris StreetView [7]
validation images (100) with irregular masks [4]. LLF denotes
the low-frequency L1 loss, and LG is the adversarial loss for high-
frequency bands. LFM and Lperc denote feature matching loss
and perceptual loss respectively.
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Figure 4. Detailed structures of WaveFill Discriminator: Conv-
(k, c, d) denotes the vanilla convolution with kernel size of k ×
k, number of output channel c and dilation rate d, d is neglected
when d = 1; LReLU denotes the Leaky ReLU with a slope of 0.2;
SN refers to Spectral & Instance Normalization; Self-Attention
denotes the Self-Attention module used in [12].
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Figure 5. Detailed structures of WaveFill generator: DWT stands for Discrete Wavelet Transform; FRAN denotes the proposed Frequency
Region Attention Normalization; GC/Conv-(k, c, d) denotes the gated convolution [11] or vanilla convolution with kernel size of k × k,
number of output channel c and dilation rate d, d is neglected when d = 1; Resblk is the abbreviation of Residual Block [1]; SN refers
to Spectral & Instance Normalization; Positional Norm denotes Positional Normalization [3]; Self-Attention refers to the Self-Attention
module used in [12].



(a) Input (b) GMCNN (d) GC (e) Ours (f) GT(c) EC*

Figure 6. Qualitative comparisons of our WaveFill with several state-of-the-art inpainting methods [10, 6, 11] over the CelebA-HQ [2]
validation set with central square masks.



(a) Input (b) EC (d) MEDFE (e) Ours (f) GT(c) GC

Figure 7. Qualitative comparisons of our WaveFill with several state-of-the-art inpainting methods [6, 11, 5] over the Places2 [13]
validation set with irregular masks [4].



(a) Input (c) MEDFE (d) Ours (e) GT(b) EC

Figure 8. Qualitative comparisons of our WaveFill with several state-of-the-art inpainting methods [6, 5] over the Paris StreetView [7]
validation set with irregular masks [4]. The red boxes are used to highlight the main differences across different approaches.
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