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1. Models

We list all the models used in our experiments here again
for more friendly reading. And more details of these models
are provided.

Our architecture utilizes a total of 10 white-box
models to generate adversarial examples. In each
iteration, multiple models are randomly selected to
compose a meta-task. Under the scenario of black-
box attack, we evaluate 6 and 7 models on ImageNet
and CIFAR10, respectively. All the models used in
white-box and black-box settings are shown in Tab. 1.
For ImageNet, Ens3 Inceptionv3, Ens4 Inceptionv3,
Ens InceptionResNetv2 and Adv Inceptionv3 are defense
models adversarially trained with ensemble adversarial
training [19]1. R&P [22]2, NIPS-r3 3 and CERTIFY [1] are
also defense models. Other models are normally trained
on ImageNet and publicly available4. For CIFAR10,
Adv ResNet-18, Adv DenseNet-121 and Adv GoogLeNet
are adversarially trained with FGSM, and Adv ResNet-
18 ll is adversarially trained with LeastLikely [9].
k-WTA [21], GBZ [10] and ADP [13] are also defense
models. The rest models are normally trained on CIFAR10.

2. Impact of Hyperparameters

In this section, we analyze the influence of the hy-
perparameters: the number of models n selected for the
ensemble-based attacks during the meta-train step and the
number of tasks T sampled during the entire generation.

1https://drive.google.com/drive/folders/
10cFNVEhLpCatwECA6SPB-2g0q5zZyfaw

2https://github.com/cihangxie/NIPS2017_adv_
challenge_defense

3https://github.com/anlthms/nips-2017/tree/
master/mmd

4https://github.com/tensorflow/models/tree/
master/research/slim

Table 1: Models on CIFAR10 and ImageNet. The first 10
models are treated as white-box models and the rest models
are black-box models in our experimental settings.

No. ImageNet CIFAR10

white-
box

models

1 Inceptionv3 [18] ResNet-18 [6]
2 Inceptionv4 [16] ResNetv2-18 [7]
3 InceptionResNetv2 [16] GoogLeNet [17]
4 ResNetv2-152 [7] ResNeXt-29 [24]
5 Ens3 Inceptionv3 [19] SENet-18 [8]
6 Ens4 Inceptionv3 [19] RegNetX-200mf [14]
7 Ens InceptionResNetv2 [19] DLA [25]
8 ResNetv2-101 [7] Shake-ResNet-26 2x64d [4]
9 MobileNetv2 1.0 [15] Adv ResNet-18

10 PNasNet [12] Adv DenseNet-121

black-
box

models

11 Adv Inceptionv3 [19] PyramidNet-164 [5]
12 NasNet mobile [26] CbamResNeXt [20]
13 MobileNetv2 1.4 [15] Adv GoogLeNet
14 R&P [22] Adv ResNet-18 ll
15 NIPS-r3 k-WTA [21]
16 CERTIFY [1] GBZ [10]
17 ADP [13]

The number of sampled tasks T . Our architecture sim-
ulates the process of white-box and black-box attacks itera-
tively by sampling different model combinations as a meta-
task, and the number of sampled tasks T may influence the
attack success rate of the generated adversarial examples
against the defenses. We compare the attack effects of the
generated adversarial examples under white-box and black-
box settings when T ranges from 10 to 120 in Tab. 2. It can
be seen that the more sampled tasks are taken, the higher at-
tack success rate can be achieved, especially for black-box
settings. The reason behind it lies in that more scenarios
of white-box and black-box attacks are simulated by sam-
pling more tasks and the gap of white-box and black-box
attacks are gradually narrowed, leading to better transfer-
ability of adversarial examples against black-box models.
However, on the other hand, increasing the number of sam-
pled tasks also increases the time generating adversarial ex-
amples. Considering a trade-off of both efficiency and ef-
fectiveness, the value of T is recommended to be 40.

The number of ensembled models n in meta-train



Table 2: The attack success rates of the adversarial examples generated under different sampled tasks T against the white-
box and black-box models on ImageNet. The number of iterations K in meta-train step is 2. The number of ensembled
models n in meta-train step is 5. The index of models in the table is the same as Tab. 1.

T
white-box models black-box models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 98.7 98.6 97.9 97.8 98.4 98.0 96.4 97.0 97.7 98.2 94.5 96.9 96.7 95.6 95.8 66.8
20 99.1 99.2 98.5 98.4 99.1 98.6 97.7 98.3 98.5 98.6 96.1 97.9 97.9 96.8 97.0 68.7
30 99.3 99.1 98.7 98.3 99.1 99.1 98.0 98.4 99.0 99.0 97.1 98.2 98.2 97.1 97.0 69.0
40 99.5 99.5 98.9 98.5 99.2 99.0 98.2 98.6 99.0 98.9 97.4 98.2 98.3 97.7 97.6 70.2
60 99.5 99.5 99.2 98.8 99.2 99.0 98.3 98.9 98.9 99.3 97.8 98.5 98.5 98.0 98.3 71.1
80 99.5 99.5 99.3 98.9 99.3 99.1 98.2 98.8 99.1 99.3 97.9 98.4 98.7 97.9 97.9 71.3
120 99.7 99.8 99.3 98.8 99.4 99.3 98.5 98.9 99.2 99.4 98.2 98.7 98.6 98.1 98.3 71.6

step. In the meta-train step, we use an ensemble of multiple
models to calculate the gradients and update the adversar-
ial examples. We compare the attack success rates against
the white-box and black-box models with an ensemble of
different numbers of models n during the update in Tab. 3.
It can be seen that, when the number of ensembled mod-
els increases, the success rates against the white-box and
black-box attacks become higher and higher. But when n is
greater than 5, the increase in attack success rates is not ob-
vious, which shows that our architecture is not sensitive to
the hyperparameter n to a certain extent. Considering that
the more ensembled models in each iteration, the higher the
computational complexity is needed. Therefore, it is a suit-
able choice to set the number of ensembled models to be
5.

3. More Results of the Untargeted Attack
Except the experiments of the untargeted attack with T

being 40 illustrated in the manuscript, we also conduct the
experiments with T being 10, which is the common setting
in MIM [2], DIM [23] and TIM [3]. As shown in Tab. 4,
our proposed MGAA also outperforms the state-of-the-art
methods under the setting of T being 10. Moreover, when
comparing the results of our method under the setting of T
being 10 with the baseline methods under the setting of T
being 40, we can see that the time cost is nearly equal, but
our method still achieves higher attack success rates under
both white-box and black-box settings.

4. Attack under Various Perturbation Budgets
We conduct experiments of the attack under various per-

turbation budgets. The curve of attack success rate vs. per-
turbation budgets is shown in Fig. 1. The curve with dotted
lines are the results of TI-DIM, and the curve with solid
lines are the results of our method. We can clearly see
that our MGAA consistently achieves higher attack success
rates in both white-box and black-box attacks under various
perturbation budgets.

5. Ablation Study

We conduct an ablation study to demonstrate the effec-
tiveness of each part in our proposed MGAA architecture.
The version of MGAA without meta-test is actually the ex-
isting methods like TI-DIM [3], i.e., using an ensemble of
multiple models to update the adversarial examples in each
step of the iteration. The version of MGAA without meta-
train is to use only one randomly selected model to update
the adversarial perturbation in each step. From Tab. 5, we
can see that the meta-train step plays a more important role
than the meta-test step. And the full version of our MGAA
architecture achieves higher attack success rates than both
meta-train only and meta-test only versions.

6. The Cosine Similarity of the Gradients

We calculate the cosine similarity between the gener-
ated adversarial perturbations on ten white-box models
and the gradient directions of three black-box models,
i.e., Adv Inceptionv3, NasNet, and MobileNetv2 1.4. The
range of cosine similarity is -1 to 1, and the bigger value
means the more similar direction. As shown in Tab. 6,
the generated adversarial perturbations by our MGAA are
closer to the gradient directions of both three black-box
models consistently, which verifies the theoretical analysis
in Sec. 3.3 in the paper that MGAA can narrow the gaps
of gradient directions between the white-box and black-box
models.

7. Minimum Adversarial Noises

We conduct the experiment to see the minimum adver-
sarial noise needed to fool each image. From Tab. 7 we
can see that the minimum adversarial noise needed in our
MGAA is less than TI-DIM method under various metric
evaluations.



Table 3: The attack success rates of the adversarial examples generated under different number of ensembled models n in
meta-train step against the white-box and black-box models on ImageNet. The number of sampled tasks T is 40. The number
of iterations K in meta-train step is 5.

n
white-box models black-box models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 99.9 99.6 99.7 99.1 99.5 99.6 99.0 99.0 99.4 99.4 98.6 98.8 98.8 98.6 98.6 70.3
4 99.5 99.9 99.9 99.4 99.7 99.5 99.1 99.4 99.3 99.6 98.7 99.1 98.9 99.0 98.8 70.6
5 99.9 100 99.7 99.5 99.8 99.7 98.9 99.5 99.5 99.7 98.6 99.3 99.1 98.7 98.6 71.3
6 99.8 99.9 99.6 99.5 99.9 99.8 99.1 99.6 99.4 99.7 98.7 99.1 99.2 98.7 98.8 71.6
7 99.9 99.9 99.7 99.5 99.7 99.8 99.1 99.4 99.4 99.6 98.9 99.3 99.2 98.7 98.8 72.2
8 99.9 100 99.8 99.7 99.9 99.8 99.1 99.6 99.4 99.7 98.8 99.3 99.3 99.0 99.0 71.9
9 99.9 100 99.8 99.7 99.9 99.8 99.3 99.5 99.4 99.8 98.6 99.3 99.2 99.1 99.0 72.0

Table 4: The attack success rates of the adversarial examples from our proposed Meta Gradient Adversarial Attack and some
state-of-the-art methods against the white-box and black-box models on ImageNet under untargeted attack setting. The
number of ensembled models n in meta-train step is 5. The number of iterations K in meta-train step is 8.

(a) The number of sampled tasks T and the number of iteration in baseline methods are all 10.

Method white-box models black-box models Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (s/img)

SI-NI [11] 99.6 96.5 96.1 94.4 98.8 99.1 92.4 93.9 99.0 97.2 43.0 88.3 90.5 49.3 53.1 38.1 22.76
MIM [2] 99.4 99.5 99.2 98.2 99.5 99.8 99.1 98.6 98.7 97.7 44.1 91.5 93.9 66.0 70.3 34.9 6.48

MGAA w/ MIM 100 100 100 99.8 100 100 100 99.5 99.8 99.3 46.5 95.3 97.0 68.2 73.9 37.4 22.54
DIM [23] 99.5 99.7 99.4 98.6 99.5 99.6 98.5 98.5 98.8 98.8 78.5 98.1 98.3 95.4 87.7 44.7 8.23

MGAA w/ DIM 100 100 100 99.6 99.9 99.8 98.9 99.6 99.7 99.6 79.9 99.3 99.4 96.5 97.3 48.7 22.96
TI-DIM [3] 98.5 98.5 97.3 97.2 98.0 97.7 95.8 97.1 97.1 97.7 93.3 96.3 95.7 95.1 94.9 67.8 7.09

MGAA w/ TI-DIM 99.8 99.9 99.7 99.4 99.7 99.5 98.9 99.3 99.3 99.3 98.4 99.0 99.0 98.6 98.7 70.5 21.33
(b) The number of sampled tasks T and the number of iteration in baseline methods are all 40.

Method white-box models black-box models Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (s/img)

SI-NI [11] 99.7 97.5 97.4 96.3 98.8 98.6 90.8 95.6 99.7 98.2 48.2 90.8 92.9 50.6 58.5 38.9 68.29
MIM [2] 99.6 99.7 99.4 98.7 99.8 99.8 99.5 99.0 99.1 98.2 44.4 92.6 94.1 65.4 72.2 34.4 17.51

MGAA w/ MIM 100 100 100 99.9 100 100 100 99.9 99.9 99.9 52.0 96.0 96.9 67.1 74.9 37.0 71.24
DIM [23] 99.4 99.8 99.5 98.6 99.4 99.5 98.5 98.6 98.9 98.8 79.4 98.0 98.3 95.0 95.3 44.8 22.22

MGAA w/ DIM 100 100 100 99.9 100 100 99.9 99.9 100 99.9 88.0 99.9 99.8 98.9 98.9 49.3 69.26
TI-DIM [3] 98.9 99.1 98.2 98.3 98.9 98.6 97.3 98.0 98.1 98.3 96.3 97.5 97.5 96.7 96.8 67.8 19.13

MGAA w/ TI-DIM 100 100 99.9 99.8 99.9 99.8 99.4 99.8 99.6 100 99.1 99.4 99.5 99.4 99.0 71.6 67.28

Table 5: The ablation study of different parts in our proposed MGAA architecture.

Setting white-box models black-box models
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MGAA w/o meta-train 95.7 93.7 92.4 96.0 94.3 93.1 89.3 96.3 97.9 96.2 81.5 89.4 89.3 81.8 82.6 52.5
MGAA w/o meta-test 98.9 99.1 98.2 98.3 98.9 98.6 97.3 98.0 98.1 98.3 96.3 97.5 97.5 96.7 96.8 67.8

MGAA 100 100 99.9 99.8 99.9 99.8 99.4 99.8 99.6 100 99.1 99.4 99.5 99.4 99.0 71.4

Note: MGAA w/o meta-test is actually the same as existing method like TI-DIM [3].

Table 6: The cosine similarity between the generated ad-
versarial perturbations on ten white-box models and the
gradient directions directly computed on three black-box
models.

Method Adv Inceptionv3 NasNet MobileNetv2 1.4
TI-DIM -0.104 -0.070 -0.084

MGAA w/ TI-DIM 0.113 0.071 0.083
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Figure 1: The attack success rates vs. perturbation budget curve on ImageNet. The dotted lines are the results of TI-DIM,
and the solid lines are the results of our method. The number in the legend means the index of models in Tab. 1.
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