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This supplementary material presents more experimen-
tal details, including data pre-processing, implementation
details, additional experimental results, and ablation stud-
ies.

1. 3D Human Pose Estimation

In this section, we demonstrate more detailed results on
3D human pose estimation. Sec. 1.1 gives more details on
experiment settings. Second, Sec. 1.2 analyzes features of
hard poses in this task. Third, Sec. 1.3 compares exist-
ing methods by the metric of PA-MPJPE. Finally, Sec. 1.4
shows the ablation study of only using a dynamic graph with
HCSF module.

1.1. Dataset and Implementation Details

1.1.1 Dataset Pre-processing

We follow our baseline [2] to transform the 3D joint po-
sition under the camera coordinate system into the pixel
coordinate system to remove the influence of pose scales
for the single-view pose estimation. Following previous
works [11, 2, 20], we normalize 2D input poses in the range
of [-1, 1] according to the width and height of images. The
furthest hop is 6 in our pre-defined topology. Meanwhile,
we set the entry values of the adjacency matrix to be ones if
two nodes are physically connected and zero if not.

1.1.2 Training Details

We build a six-layer network as the basic setting, including
the first layer, two cascaded blocks, and the last layer. For
a single-frame setting, each cascaded block consists of two
HCSF layers followed by BN, LeakyReLU (alpha is 0.2),
and dropout (random drop probability is 0.25). Besides,
each block is wrapped with a residual connection, as shown
in Fig.3 in the main paper. The channel size of each layer
we report in the final result is 128. In the ablation study,
we set all output channels as 64 for each node. The above
framework is a common structure that is also used in those
works [9, 11, 2, 21, 20]. For temporal settings, each cas-
caded block consists of one HCSF layer and one TCN layer.
The fusion functions F}, and F, are concatenation operators

by default, which can also be addition, multiplication. L1
regression loss is used between the ground truth and out-
puts. Moreover, we train our model for 80 epochs using
Adam [4] optimizer. The initial learning rate is set as 0.001,
and the exponential decay rate is 0.95. The mini-batch size
is 256. For data augmentation, we follow [11, 2, 21, 20]
and use horizontal flip data augmentation at both training
and test stages. Then, we evaluate our method with stan-
dard protocol following [2, 21, 20, 11].

1.2. Further Analysis on Model-Specific Hard Poses

We define high-error poses as hard poses in the 2D-
3D pose regression task. After analyzing the error distri-
bution of hard poses in recent works [9, 21, 2, 20], we
could conclude they are model-specific. As shown in Fig. 1,
we illustrate the comparison of the (50% ~ 5%) hardest
poses from each method. For example, Fig. 1(a) shows the
(50% ~ 5%) hardest poses from the fully connected net-
work [9], and we compare the results with the other four
methods under the same poses.

We can observe: (1) The hardest 10% poses of each
method is different, indicating that hard poses are model-
specific; (2) as the poses become increasingly difficult, the
errors of all methods rise to some extent; (3) our method
obtains the best results for the hardest poses of all the other
four methods; (4) the error gap in Fig. 1(e) is smaller than
Fig. 1(a~d).

1.3. Comparison in PA-MPJPE

In Tab. 1, we compare our methods with other related
works using the PA-MPJPE metric where available. We
show the results from different 2D inputs, using detected
poses or ground truth poses. Our approach achieves the
new state-of-the-art with different inputs. Specifically, we
surpass [20] from 27.8mm to 24.8mm (relative 10.8% im-
provement) with 2D ground truth input. Moreover, we im-
prove upon [6] from 41.2mm to 39.0mm (relative 5.3% im-
provement) with 2D keypoint detection input. Our method
can also show the superior in this metric, indicating the ef-
fectiveness of this method.



Method Direct  Discuss Eat Greet  Phone  Photo  Pose  Purcha. Sit SitD Smoke ~ Wait ~ WalkD ~ Walk  WalkT ~ Avg.

Martinez et al. [Y] 39.5 432 46.4 47.0 51.0 56.0 41.4 40.6 565 694 49.2 45.0 49.5 38.0 43.1 47.7
Fang et al. [3] 382 41.7 43.7 44.9 48.5 553 40.2 382 545 644 47.2 443 47.3 36.7 41.7 45.7
Park et al. [10] 383 42,5 41.5 433 47.5 53.0 393 37.1 54.1 64.3 46.0 42.0 44.8 347 38.7 45.0
Hossain et al. [14] § 357 393 44.6 43.0 47.2 54.0 383 375 51.6 613 46.5 41.4 47.3 342 394 441
Zouetal. [22] T 38.6 42.8 41.8 434 44.6 529 37.5 38.6 533 60.0 44.4 40.9 46.9 322 379 43.7
Liuetal. [7]f 384 41.1 40.6 42.8 435 51.6 39.5 37.6 49.7  58.1 432 39.2 452 328 38.1 42.8
Cietal. [2]f 36.9 41.6 38.0 41.0 419 511 382 37.6 49.1 62.1 43.1 39.9 435 322 37.0 422
Liu et al. [6]F 359 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6  56.6 41.8 38.3 42.7 31.7 36.2 412
Ours-HCSFt 343 37.6 37.5 38.6 39.5 44.2 38.3 355 48.5 556 41.4 38.7 423 30.8 322 39.7
Ours-HCSF w/AT 33.9 37.2 36.8 38.1 38.7 43.5 37.8 35.0 47.2 538 40.7 38.3 41.8 30.1 31.4 39.0
Zeng et al. [20]§ 243 28.1 243 28.1 274 29.8 28.3 25.6 27.8 345 27.5 27.7 31.8 25.7 25.6 27.8
Ours-HCSFT § 209 273 22.4 253 24.4 29.7 249 23.0 272 326 258 25.6 26.4 20.4 21.7 252

Ours-HCSF w/AT § 20.7 26.9 22.1 24.8 24.0 29.1 24.5 22.7 268 321 25.3 25.2 26.0 20.2 21.5 24.8

Table 1: Comparison results regarding PA-MPIPE after rigid transformation from the ground truth. We highlight the graph-
based methods by t. § donates the use of 2D ground truth poses as input. Best results in bold.

Method LCN a b c d e f g
Ap ori Only My, (ori) | Only My (dense) | Only My, (rand) | Only O | My + O | Eq.8 | Eq.8 w/T
MPJPE(mm) | 35.7 | 34.8 [ 355 [ 412 | 461 [ 343 [340] 335

Table 2: Comparison on the effects of dynamic graph learning A in a Non-hierarchy strategy. ori is the static graph with
physical connections, shown in LCN [2]. Baseline takes Ay as ori. Only My (-) denotes applying M, with different
initialization. Only Oy, keeps the dynamic offset in Eq.8. M}, + Oy equals to set « = 1 in Eq.8. w/T represents the
temporal-aware scheme defined in Sec.3.3.
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This work has two main contributions: Hierarchical
Channel-Squeezing Fusion (HCSF) and temporal-aware dy-
namic graph learning. We further explore how temporal-
aware dynamic graph alone influences the regression re-
sults. The 2D inputs are 2D ground truth to explore the
upper bound of our method to avoid some irrelevant noises
from detected 2D poses.

Effects of dynamic graph learning. Dynamic graph learn-
ing shows different action-related connectivity with differ-
ent inputs. It can be more flexible to extract specific-action
patterns, especially for hard poses. We have demonstrated
the influence on both HCSF and dynamic graph learning
in the main paper. Accordingly, we study the effects of
dynamic graph learning alone. We take the Non-hierarchy
strategy LCN with the static graph aggregating with hop-2
as a baseline. Similar to the Tab.6 in the main paper, the Tab.
2a, 2b, 2c shows that My, (ori), using the physical topol-

Table 3: The impact of settings F' of temporal convolution
in dynamic graph learning of 3D human pose estimation.
st. is an abbreviation for stride, and di. is dilation.

is essential to introduce temporal consistency to make the
process effective. We then explore how different settings in
the temporal-aware scheme impact the performance. The
temporal-aware schemes are different from the receptive
fields. We fix S=1, L=2, d=1/8. The channel size of each
layer is 128. And the frame of input is 9. From Tab. 3, we
can find that using the 3 x 1 kernel size will be better than
other settings. And using temporal information will consis-
tently improve the single-frame results by 0.1 ~ 0.4mm.
Thus, we report our final results using the 3 x 1 kernel size.

2. Skeleton-based Human Action Recognition

ogy as an initial connections, is better than M, (dense) and In this section, we present the experimental details, more
M, (rand). The weighted graph M, (ori) can also surpass results and ablation study of skeleton-based action recogni-
the same weighted graph in LCN. Moreover, only learn- tion in Sec. 2.1, Sec. 2.2 and Sec. 2.3, respectively.

ing graph structure from features increase the error from
35.7mm to 46.1, which is infeasible. After combining the
weighed graph M, (ori) with the dynamic offset Oy, we 2.1.1 Data Description

2.1. Dataset and Implementation Details

can obtain 0.5mm improvement. Furthermore, considering NTU RGB+D 60 [15] is one of the most widely used in-
a dynamic scale « to control the influence of the dynamic door RGB+Depth action recognition dataset with 60 ac-
offsets, which is the formula in Eq.8, will be helpful. Last, tions. They include daily, mutual, and health-related ac-
we can observe that the temporal-aware scheme can boost tions. NTU RGB+D 60 has 40 subjects under three cam-
the performance, decreasing the MPJPE from 34.0mm to eras. FOHOWng []()’ 17, 19, 13, ]8]’ we use skeleton se-
33.5mm. quences with 25 body joints captured by Kinect V.2 as
Effects of the temporal scale. The uncertainty in single- inputs, and take two evaluation settings in NTU RGB+D
frame poses will affect the regression results, making dy- 60: (1) Cross-Subject (X-Sub), where 20 subjects each for

namic graph learning unstable and misleading. Hence, it training and testing, respectively; (2) Cross-View (X-View),
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Figure 1: The comparison of the hard poses in terms of each
method.

where 2 camera views for training and 1 camera view for
testing. We perform the ablation study in Sec. 2.3 on the
X-View setting.

NTU RGB+D 120 [5] collects 120 various actions by 106
distinct subjects and contains more than 114 thousand video
samples and 8 million frames. We also follow some previ-
ous works [19, 8, 13, 12], using two evaluation settings: (1)
Cross-Setup (X-Set), training on 16 camera setups and test-
ing on other 16 camera setups; (2) Cross-Subject (X-Sub),
half subjects for training and half for testing. We report the
top-1 accuracy on both benchmarks.

2.1.2 Data Pre-processing

The procedure for both datasets follows [16, 17, 8]. Each
video has a maximum of 300 frames, and if it is shorter than
300, we repeat some frames to make up for it. Since there
are at most two people in both datasets, we pad the second
body with zeros to keep the same shape of inputs when the
second body does not appear.

2.1.3 Training Details

We build a ten-layer network, including nine cascaded
blocks that consist of one HCSF layer followed by BN,
ReLU, temporal convolution layer (TCN), BN and ReLU.
Each temporal 1D convolution layer conducts 9 x 1 convo-
Iution on the feature maps. Each block is wrapped with a
residual connection. The output dimension for each block
are 64, 64, 64, 128, 128, 128, 256, 256 and 256. A global
average pooling layer and a fully-connected layer are used
to aggregate extracted features, and then, feed them into
a softmax classifier to obtain the action class. The above
framework is also a common setting as in [18, 16, 17, 19].
For multi-stream networks [17], we use four modalities,
e.g., joints, bones and their motions, as inputs for each
stream, and average their softmax scores to obtain the fi-
nal prediction. Cross-entropy is used as the classification
loss function to back-propagate gradients. We set the entry
values in the adjacency matrix to be ones if two nodes are
physically connected and zero if not.

For the training settings, we train our model for 60
epochs using the SGD optimizer with mini-batch size 64.
The initial learning rate is 0.1 and it reduces by 10 times
in both the 35, and 45, epoch, respectively. The weight
decay is set as 0.0005. All data augmentation is the same
as [16, 17].

2.2. Results of Single-Stream Framework

Due to space limitations, we only report the accuracy of
the multi-stream framework [ 17] for the skeleton-based hu-
man action recognition task in the main paper. Specifically,
the multi-stream network comprises four different modality
inputs: the 3D skeleton joint position, the 3D skeleton bone
vector, the motion of the 3D skeleton joint, and the motion



NTU-RGB+D 60 NTU-RGB+D 120

Method X-Sub(%)  X-View(%) | X-Sub(%)  X-Set(%)
Joint 39.0 953 335 85.7
Bone 89.3 94.9 85.0 86.6

Joint-Motion 86.9 935 80.1 81.5
Bone-Motion 86.9 93.1 80.6 83.0
Multi-Stream 91.6 96.7 875 89.2

Table 4: Top-1 accuracy (%) is used as the evaluation met-
ric. The best result in each K is in bold.

Decay Rate d 1 1/2 1/4 1/8 1/16
Static-G 939 | 945 | 94.6 | 94.8 94.5
Dynamic-M | 944 | 949 | 951 | 949 95.1
Dynamic-.A 94.6 | 950 | 952 | 953 95.3

Table 5: The impact of decay rate d under static matrix G,
dynamic graph from My, and dynamic graph from Ay in
Eq.8.

of the 3D skeleton bone. Here, we report the performance
of each modality input in Tab. 4 for the ease of comparison
with existing works.

2.3. Ablation Study

We investigate the proposed methods on the NTU RGB-
D X-View setting with 3D joint positions as inputs.

Effects of hierarchical channel-squeezing fusion block.
From Tab. 5, our method improves the accuracy of 0.7%
steadily under all three graph settings, static graphs G, and
two dynamic graphs M, and Ay in Eq.8. Basically, bet-
ter results can be achieved when d=1/8. Moreover, we get
the best results when using HCSF with dynamic graph Ay,
which validates the effectiveness of the proposed structure.

Furthermore, in Tab. 6, we demonstrate the performance
of different methods concerning the number of hops. Since
the skeleton topology in NTU-RGBD datasets is different
from Human3.6M, it has more keypoints and further hops.
The furthest hop is 13 in our pre-defined topology. We set
S=5, L=7 and d=1/8. k-hop (k=1,5,7) means aggregat-
ing the neighbors within the distance & (1-hop with a static
graph is ST-GCN [18]). Mixhop [!] means that it con-
catenates the k-hop (k=1, 5, 7) features as the output of a
layer, and the output size of the k-hop feature is one-third
of the final output. MS-Hop means that it averages the k-
hop (k=1,5,7) features, and the output size of the k-hop
feature is the same as the final output.

As illustrated in Tab. 6, though MixHop and MS-Hop
show improvements on k-hop strategies, they have no dis-
tinction in handling distant and close neighbors, which
over-mix the useful and noisy information. Our approaches
outperform all other baselines, which indicates the effec-
tiveness of the hierarchical channel-squeezing fusion strat-
egy.

Additionally, we explore the effects of other hyper-
parameters in the HCSF. We have the following observa-

Method I-hop | 5-hop | 7-hop | MixHop | MS-Hop | Ours
Static G 922 93.5 93.7 93.9 94.1 94.8
Dynamic- M 93.4 94.1 94.1 94.5 94.6 95.2
Dynamic-.A 93.9 94.3 94.2 94.8 94.7 95.3

Table 6: Comparison on various multiple hop structures un-
der static matrix Gx, dynamic graph from My, and a dy-
namic graph from Ay. Top-1 accuracy is used as the evalu-
ation metric.

F [(LD [ G.D [ Ghwist=2 | G.hwidi=2 | (5, [ (7,
HCSF | 947 | 953 | 95.0 \ 948 [ 951 | 947

Table 7: The impact of settings of temporal convolution in
dynamic graph learning of skeleton-based action recogni-
tion. st. is an abbreviation for stride, and di. is dilation.

tions. First, when using a dynamic graph A in Eq.8 and
fixing the hyper-parameters squeezing ratio d and the out-
put channel size C in a layer, we find little effects on the re-
sults that S and L has. The accuracy is stable around 95.1%
(~ 0.2%). It indicates that the HCSF is robust to the noise
in the graph. Second, as the number of hops increases, the
performance first improves and then becomes stable. Since
adding more hops leads to extra computations, to balance
the computation efficiency and performance, our final set-
ting for each layer is S=5, L=7, d=1/8, C' of each layer is
the same as [18, 16, 17]. Last, we also explore to automati-
cally learn the relations between hops and dimensions with
the guidance of channel attention. However, we find that
the exponentially decaying in dimension consistently yields
better results than the soft attention, which may be because
the soft attention mechanism introduces more uncertainty
and complexity.

Effects of the temporal-aware dynamic graph learning.
The jitter and missing inputs will make dynamic graph
learning unreliable, making it difficult to distinguish be-
tween similar actions, e.g., “eat a meal” and “brushing
teeth.” Such problems are serious in using single-frame fea-
tures, but they can be improved by involving temporal in-
formation. From Tab. 7, we can observe that when using
three frames into a temporal convolution, it can improve the
single-frame setting by 0.6%. While the settings of tempo-
ral aggregation are important, the longer temporal contexts
will also degrade the performance, and use three frames will
be the optimal setting.
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