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This supplementary material presents more experimen-

tal details, including data pre-processing, implementation

details, additional experimental results, and ablation stud-

ies.

1. 3D Human Pose Estimation
In this section, we demonstrate more detailed results on

3D human pose estimation. Sec. 1.1 gives more details on

experiment settings. Second, Sec. 1.2 analyzes features of

hard poses in this task. Third, Sec. 1.3 compares exist-

ing methods by the metric of PA-MPJPE. Finally, Sec. 1.4

shows the ablation study of only using a dynamic graph with

HCSF module.

1.1. Dataset and Implementation Details

1.1.1 Dataset Pre-processing
We follow our baseline [2] to transform the 3D joint po-

sition under the camera coordinate system into the pixel

coordinate system to remove the influence of pose scales

for the single-view pose estimation. Following previous

works [11, 2, 20], we normalize 2D input poses in the range

of [-1, 1] according to the width and height of images. The

furthest hop is 6 in our pre-defined topology. Meanwhile,

we set the entry values of the adjacency matrix to be ones if

two nodes are physically connected and zero if not.

1.1.2 Training Details
We build a six-layer network as the basic setting, including

the first layer, two cascaded blocks, and the last layer. For

a single-frame setting, each cascaded block consists of two

HCSF layers followed by BN, LeakyReLU (alpha is 0.2),

and dropout (random drop probability is 0.25). Besides,

each block is wrapped with a residual connection, as shown

in Fig.3 in the main paper. The channel size of each layer

we report in the final result is 128. In the ablation study,

we set all output channels as 64 for each node. The above

framework is a common structure that is also used in those

works [9, 11, 2, 21, 20]. For temporal settings, each cas-

caded block consists of one HCSF layer and one TCN layer.

The fusion functions Fk and Fa are concatenation operators

by default, which can also be addition, multiplication. L1

regression loss is used between the ground truth and out-

puts. Moreover, we train our model for 80 epochs using

Adam [4] optimizer. The initial learning rate is set as 0.001,

and the exponential decay rate is 0.95. The mini-batch size

is 256. For data augmentation, we follow [11, 2, 21, 20]

and use horizontal flip data augmentation at both training

and test stages. Then, we evaluate our method with stan-

dard protocol following [2, 21, 20, 11].

1.2. Further Analysis on Model-Specific Hard Poses
We define high-error poses as hard poses in the 2D-

3D pose regression task. After analyzing the error distri-

bution of hard poses in recent works [9, 21, 2, 20], we

could conclude they are model-specific. As shown in Fig. 1,

we illustrate the comparison of the (50% ∼ 5%) hardest

poses from each method. For example, Fig. 1(a) shows the

(50% ∼ 5%) hardest poses from the fully connected net-

work [9], and we compare the results with the other four

methods under the same poses.

We can observe: (1) The hardest 10% poses of each

method is different, indicating that hard poses are model-

specific; (2) as the poses become increasingly difficult, the

errors of all methods rise to some extent; (3) our method

obtains the best results for the hardest poses of all the other

four methods; (4) the error gap in Fig. 1(e) is smaller than

Fig. 1(a∼d).

1.3. Comparison in PA-MPJPE
In Tab. 1, we compare our methods with other related

works using the PA-MPJPE metric where available. We

show the results from different 2D inputs, using detected

poses or ground truth poses. Our approach achieves the

new state-of-the-art with different inputs. Specifically, we

surpass [20] from 27.8mm to 24.8mm (relative 10.8% im-

provement) with 2D ground truth input. Moreover, we im-

prove upon [6] from 41.2mm to 39.0mm (relative 5.3% im-

provement) with 2D keypoint detection input. Our method

can also show the superior in this metric, indicating the ef-

fectiveness of this method.



Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Martinez et al. [9] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Fang et al. [3] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Park et al. [10] 38.3 42.5 41.5 43.3 47.5 53.0 39.3 37.1 54.1 64.3 46.0 42.0 44.8 34.7 38.7 45.0
Hossain et al. [14] § 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Zou et al. [22] † 38.6 42.8 41.8 43.4 44.6 52.9 37.5 38.6 53.3 60.0 44.4 40.9 46.9 32.2 37.9 43.7
Liu et al. [7]† 38.4 41.1 40.6 42.8 43.5 51.6 39.5 37.6 49.7 58.1 43.2 39.2 45.2 32.8 38.1 42.8
Ci et al. [2]† 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2
Liu et al. [6]† 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2

Ours-HCSF† 34.3 37.6 37.5 38.6 39.5 44.2 38.3 35.5 48.5 55.6 41.4 38.7 42.3 30.8 32.2 39.7
Ours-HCSF w/A† 33.9 37.2 36.8 38.1 38.7 43.5 37.8 35.0 47.2 53.8 40.7 38.3 41.8 30.1 31.4 39.0
Zeng et al. [20]§ 24.3 28.1 24.3 28.1 27.4 29.8 28.3 25.6 27.8 34.5 27.5 27.7 31.8 25.7 25.6 27.8
Ours-HCSF† § 20.9 27.3 22.4 25.3 24.4 29.7 24.9 23.0 27.2 32.6 25.8 25.6 26.4 20.4 21.7 25.2
Ours-HCSF w/A† § 20.7 26.9 22.1 24.8 24.0 29.1 24.5 22.7 26.8 32.1 25.3 25.2 26.0 20.2 21.5 24.8

Table 1: Comparison results regarding PA-MPJPE after rigid transformation from the ground truth. We highlight the graph-

based methods by †. § donates the use of 2D ground truth poses as input. Best results in bold.

Method LCN a b c d e f g

Ak ori Only Mk (ori) Only Mk (dense) Only Mk (rand) Only Ok Mk +Ok Eq.8 Eq.8 w/T

MPJPE(mm) 35.7 34.8 35.5 41.2 46.1 34.3 34.0 33.5

Table 2: Comparison on the effects of dynamic graph learning A in a Non-hierarchy strategy. ori is the static graph with

physical connections, shown in LCN [2]. Baseline takes Ak as ori. Only Mk (·) denotes applying Mk with different

initialization. Only Ok keeps the dynamic offset in Eq.8. Mk + Ok equals to set α = 1 in Eq.8. w/T represents the

temporal-aware scheme defined in Sec.3.3.

1.4. Ablation Study on Dynamic Graph
This work has two main contributions: Hierarchical

Channel-Squeezing Fusion (HCSF) and temporal-aware dy-

namic graph learning. We further explore how temporal-

aware dynamic graph alone influences the regression re-

sults. The 2D inputs are 2D ground truth to explore the

upper bound of our method to avoid some irrelevant noises

from detected 2D poses.

Effects of dynamic graph learning. Dynamic graph learn-

ing shows different action-related connectivity with differ-

ent inputs. It can be more flexible to extract specific-action

patterns, especially for hard poses. We have demonstrated

the influence on both HCSF and dynamic graph learning

in the main paper. Accordingly, we study the effects of

dynamic graph learning alone. We take the Non-hierarchy
strategy LCN with the static graph aggregating with hop-2
as a baseline. Similar to the Tab.6 in the main paper, the Tab.

2a, 2b, 2c shows that Mk (ori), using the physical topol-

ogy as an initial connections, is better than Mk (dense) and

Mk (rand). The weighted graph Mk (ori) can also surpass

the same weighted graph in LCN. Moreover, only learn-

ing graph structure from features increase the error from

35.7mm to 46.1, which is infeasible. After combining the

weighed graph Mk (ori) with the dynamic offset Ok, we

can obtain 0.5mm improvement. Furthermore, considering

a dynamic scale α to control the influence of the dynamic

offsets, which is the formula in Eq.8, will be helpful. Last,

we can observe that the temporal-aware scheme can boost

the performance, decreasing the MPJPE from 34.0mm to

33.5mm.

Effects of the temporal scale. The uncertainty in single-

frame poses will affect the regression results, making dy-

namic graph learning unstable and misleading. Hence, it

F (1,1) (3,1) (3,1) w/st.=2 (3,1) w/di.=2 (5,1) (7,1)

HCSF 30.8 30.4 30.7 30.7 30.6 30.7

Table 3: The impact of settings F of temporal convolution

in dynamic graph learning of 3D human pose estimation.

st. is an abbreviation for stride, and di. is dilation.

is essential to introduce temporal consistency to make the

process effective. We then explore how different settings in

the temporal-aware scheme impact the performance. The

temporal-aware schemes are different from the receptive

fields. We fix S=1, L=2, d=1/8. The channel size of each

layer is 128. And the frame of input is 9. From Tab. 3, we

can find that using the 3 × 1 kernel size will be better than

other settings. And using temporal information will consis-

tently improve the single-frame results by 0.1 ∼ 0.4mm.

Thus, we report our final results using the 3× 1 kernel size.

2. Skeleton-based Human Action Recognition
In this section, we present the experimental details, more

results and ablation study of skeleton-based action recogni-

tion in Sec. 2.1, Sec. 2.2 and Sec. 2.3, respectively.

2.1. Dataset and Implementation Details

2.1.1 Data Description
NTU RGB+D 60 [15] is one of the most widely used in-

door RGB+Depth action recognition dataset with 60 ac-

tions. They include daily, mutual, and health-related ac-

tions. NTU RGB+D 60 has 40 subjects under three cam-

eras. Following [16, 17, 19, 13, 18], we use skeleton se-

quences with 25 body joints captured by Kinect V.2 as

inputs, and take two evaluation settings in NTU RGB+D

60: (1) Cross-Subject (X-Sub), where 20 subjects each for

training and testing, respectively; (2) Cross-View (X-View),



(a) The hard poses of FCN [9]

(b) The hard poses of SemGCN [21]

(c) The hard poses of LCN [2]

(d) The hard poses of SRNet [20]

(e) The hard poses of Ours

Figure 1: The comparison of the hard poses in terms of each

method.

where 2 camera views for training and 1 camera view for

testing. We perform the ablation study in Sec. 2.3 on the

X-View setting.

NTU RGB+D 120 [5] collects 120 various actions by 106

distinct subjects and contains more than 114 thousand video

samples and 8 million frames. We also follow some previ-

ous works [19, 8, 13, 12], using two evaluation settings: (1)

Cross-Setup (X-Set), training on 16 camera setups and test-

ing on other 16 camera setups; (2) Cross-Subject (X-Sub),

half subjects for training and half for testing. We report the

top-1 accuracy on both benchmarks.

2.1.2 Data Pre-processing
The procedure for both datasets follows [16, 17, 8]. Each

video has a maximum of 300 frames, and if it is shorter than

300, we repeat some frames to make up for it. Since there

are at most two people in both datasets, we pad the second

body with zeros to keep the same shape of inputs when the

second body does not appear.

2.1.3 Training Details
We build a ten-layer network, including nine cascaded

blocks that consist of one HCSF layer followed by BN,

ReLU, temporal convolution layer (TCN), BN and ReLU.

Each temporal 1D convolution layer conducts 9× 1 convo-

lution on the feature maps. Each block is wrapped with a

residual connection. The output dimension for each block

are 64, 64, 64, 128, 128, 128, 256, 256 and 256. A global

average pooling layer and a fully-connected layer are used

to aggregate extracted features, and then, feed them into

a softmax classifier to obtain the action class. The above

framework is also a common setting as in [18, 16, 17, 19].

For multi-stream networks [17], we use four modalities,

e.g., joints, bones and their motions, as inputs for each

stream, and average their softmax scores to obtain the fi-

nal prediction. Cross-entropy is used as the classification

loss function to back-propagate gradients. We set the entry

values in the adjacency matrix to be ones if two nodes are

physically connected and zero if not.

For the training settings, we train our model for 60
epochs using the SGD optimizer with mini-batch size 64.

The initial learning rate is 0.1 and it reduces by 10 times

in both the 35th and 45th epoch, respectively. The weight

decay is set as 0.0005. All data augmentation is the same

as [16, 17].

2.2. Results of Single-Stream Framework

Due to space limitations, we only report the accuracy of

the multi-stream framework [17] for the skeleton-based hu-

man action recognition task in the main paper. Specifically,

the multi-stream network comprises four different modality

inputs: the 3D skeleton joint position, the 3D skeleton bone

vector, the motion of the 3D skeleton joint, and the motion



Method
NTU-RGB+D 60 NTU-RGB+D 120

X-Sub(%) X-View(%) X-Sub(%) X-Set(%)

Joint 89.0 95.3 83.5 85.7
Bone 89.3 94.9 85.0 86.6

Joint-Motion 86.9 93.5 80.1 81.5
Bone-Motion 86.9 93.1 80.6 83.0

Multi-Stream 91.6 96.7 87.5 89.2

Table 4: Top-1 accuracy (%) is used as the evaluation met-

ric. The best result in each K is in bold.

Decay Rate d 1 1/2 1/4 1/8 1/16
Static-G 93.9 94.5 94.6 94.8 94.5
Dynamic-M 94.4 94.9 95.1 94.9 95.1
Dynamic-A 94.6 95.0 95.2 95.3 95.3

Table 5: The impact of decay rate d under static matrix G,

dynamic graph from Mk, and dynamic graph from Ak in

Eq.8.

of the 3D skeleton bone. Here, we report the performance

of each modality input in Tab. 4 for the ease of comparison

with existing works.

2.3. Ablation Study

We investigate the proposed methods on the NTU RGB-

D X-View setting with 3D joint positions as inputs.

Effects of hierarchical channel-squeezing fusion block.
From Tab. 5, our method improves the accuracy of 0.7%
steadily under all three graph settings, static graphs Gk and

two dynamic graphs Mk and Ak in Eq.8. Basically, bet-

ter results can be achieved when d=1/8. Moreover, we get

the best results when using HCSF with dynamic graph Ak,

which validates the effectiveness of the proposed structure.

Furthermore, in Tab. 6, we demonstrate the performance

of different methods concerning the number of hops. Since

the skeleton topology in NTU-RGBD datasets is different

from Human3.6M, it has more keypoints and further hops.

The furthest hop is 13 in our pre-defined topology. We set

S=5, L=7 and d=1/8. k-hop (k=1, 5, 7) means aggregat-

ing the neighbors within the distance k (1-hop with a static

graph is ST-GCN [18]). Mixhop [1] means that it con-

catenates the k-hop (k=1, 5, 7) features as the output of a

layer, and the output size of the k-hop feature is one-third

of the final output. MS-Hop means that it averages the k-

hop (k=1, 5, 7) features, and the output size of the k-hop

feature is the same as the final output.

As illustrated in Tab. 6, though MixHop and MS-Hop

show improvements on k-hop strategies, they have no dis-

tinction in handling distant and close neighbors, which

over-mix the useful and noisy information. Our approaches

outperform all other baselines, which indicates the effec-

tiveness of the hierarchical channel-squeezing fusion strat-

egy.

Additionally, we explore the effects of other hyper-

parameters in the HCSF. We have the following observa-

Method 1-hop 5-hop 7-hop MixHop MS-Hop Ours

Static G 92.2 93.5 93.7 93.9 94.1 94.8
Dynamic-M 93.4 94.1 94.1 94.5 94.6 95.2
Dynamic-A 93.9 94.3 94.2 94.8 94.7 95.3

Table 6: Comparison on various multiple hop structures un-

der static matrix GK , dynamic graph from Mk, and a dy-

namic graph from Ak. Top-1 accuracy is used as the evalu-

ation metric.

F (1,1) (3,1) (3,1) w/st.=2 (3,1) w/di.=2 (5,1) (7,1)

HCSF 94.7 95.3 95.0 94.8 95.1 94.7

Table 7: The impact of settings of temporal convolution in

dynamic graph learning of skeleton-based action recogni-

tion. st. is an abbreviation for stride, and di. is dilation.

tions. First, when using a dynamic graph Ak in Eq.8 and

fixing the hyper-parameters squeezing ratio d and the out-

put channel size C in a layer, we find little effects on the re-

sults that S and L has. The accuracy is stable around 95.1%
(∼ 0.2%). It indicates that the HCSF is robust to the noise

in the graph. Second, as the number of hops increases, the

performance first improves and then becomes stable. Since

adding more hops leads to extra computations, to balance

the computation efficiency and performance, our final set-

ting for each layer is S=5, L=7, d=1/8, C of each layer is

the same as [18, 16, 17]. Last, we also explore to automati-

cally learn the relations between hops and dimensions with

the guidance of channel attention. However, we find that

the exponentially decaying in dimension consistently yields

better results than the soft attention, which may be because

the soft attention mechanism introduces more uncertainty

and complexity.

Effects of the temporal-aware dynamic graph learning.
The jitter and missing inputs will make dynamic graph

learning unreliable, making it difficult to distinguish be-

tween similar actions, e.g., “eat a meal” and “brushing

teeth.” Such problems are serious in using single-frame fea-

tures, but they can be improved by involving temporal in-

formation. From Tab. 7, we can observe that when using

three frames into a temporal convolution, it can improve the

single-frame setting by 0.6%. While the settings of tempo-

ral aggregation are important, the longer temporal contexts

will also degrade the performance, and use three frames will

be the optimal setting.
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