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Abstract

In this supplementary material, we present fully detailed information on 1) derivation of the meta-learning update (formula
11) in the paper; 2) the threshold-aware loss; 3) network structure of the GCN cleaner.

1. Meta-Learning Update
In the paper, we combine the meta-train and meta-test loss to get the final meta update loss as

Lmeta = γLtrain (θ) + (1− γ)Ltest (θ′) (1)

Recall the update equation of SGD, the parameter θ is updated as

θ ← θ − α
1

B

B∑
b=1

∇θLmeta
b (θ, θ′) (2)

The computation of Eq. 11 in the paper by backpropagation can be understood by the following derivation:
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where ∂θ′

∂θ is determined in the meta-training phase and can be extracted from the sum, therefore the second term
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By substituting Eq. 3 and Eq. 4 into Eq. 2, the meta-update formula is as shown in the paper:

θ ← θ − γ · α
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It can be seen that three terms control the gradient descent of parameter θ. The first term optimize meta-train set with
learning rate γ · α towards θ′, then the second term optimize meta-test set on the updated model parameter θ′ with learning
rate (1− γ) · α. So that the parameter is trained to perform well on both meta-train and meta-test domains. The third term

applies gradient ascent on parameter θ′ with learning rate (1−γ)·α2

B

B∑
b=1

∂2Ltrain
b (θ)
∂θ2 , which is constrained by the second-order

derivative from meta-train domain. For instance, when the model reaches the local-minimum of the meta-train set, which
means the second-order derivative is positive, then the third term corrects the second term to step less on the meta-test set to
retain the learned knowledge from the meta-train set and to ensure convergence. Inversely, if the model is not stable on the
meta-train set, then it follows more on the meta-test set to find the space that is fitted to both domains.

2. Threshold-Aware Loss
To effectively train the threshold adapter T, a threshold-aware loss Lth is designed in the paper as below:

Lth = − 1

n

n∑
i=1

[
ŷt
i · log
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)
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+
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For sample
(
xt
i, ŷ

t
i

)
in class (Xt, Y t), we discuss the form of Lth in different situation in Algorithm 1. In fact, there are

only two cases (Eq. 7 and Eq.10) where the gradients with repect to t are valid. In Figure 1, we show a simplified situation

Algorithm 1 Deviation of the threshold-aware loss.

Require: Threshold-aware loss Lth, a sample
(
xt
i, ŷ

t
i

)
in class (Xt, Y t).

if ŷt
i = 0 then

if t > mfp then
if pt

i > (t−mfp) then

Lth = − log
(
1−

(
pt
i − (t−mfp)

))
(7)

else

Lth = 0 (8)

end if
else

Lth = − log
(
1− pt

i

)
(9)

end if
else

if t+mfn < 1 then
if pt

i < (t+mfn) then

Lth = − log
(
1−

(
t+mfn − pt

i

))
(10)

else

Lth = 0 (11)

end if
else

Lth = − log pt
i (12)

end if
end if

2



t

0 1

valid

mfp

(a) Negative samples

t

0 1

valid

mfn

(b) Positive samples

Figure 1: Training of threshold adaptor.

that the negative (triangle) and positive (rectangle) samples are well separated, but the threshold t is biased. For a noise
sample, which means ŷt

i = 0, if the predicted threshold t is greater than mfp and the predicted score for the sample pt
i is

greater than t −mfp, we treat it as a false positive sample. As shown in Figure 1a, the gradients of false negatives pull the
threshold t along the arrow in the positive direction. The threshold-aware loss is designed in cross-entropy way as in Eq. 7,
and the gradient to the parameter ϕ in the threshold adapter is

∇ϕLth = − ∇ϕt

1− (pt
i − (t−mfp))

(13)

Similarly, for a signal sample, if the predicted threshold t is less than 1 −mfn and the predicted score for the sample pt
i

is less than t + mfn, we treat it as a false negative sample. As shown in Figure 1b, the gradients of false positives pull the
threshold t along the arrow in the negative direction. The threshold-aware loss is designed in cross-entropy way as in Eq. 10,
and the gradient to the parameter ϕ in the threshold adapter is

∇ϕLth =
∇ϕt

1− (t+mfn − pt
i)

(14)

3. Graph Convolutional Network
In this paper, the GCN cleaner is designed as a binary vertex classification network, of which structure is designed similar

to a recent GCN-based data cleaning work [4]. Specifically, the GCN forward propagation function [1, 2] from layer l to
layer l + 1 of one sample vertex i on the graph is

h
(l+1)
i = σ

[
Fj∈Ni

(
h
(l)
j

)
W(l)

]
(15)

where h
(l)
i is the embedding representation of vertex i in the l-th layer, W(l) is a learnable linear transformation in the l-th

layer, and σ denotes the activation function, where sigmoid is used in the last layer, and ReLU is used in the other layers. F
is designed as the transforming function that aggregates vertex i and its neighbors with the similarity between vertices as the
weight, and outputs a new expression of the vertex:

Fj∈Ni

(
h
(l)
j

)
=

h(l)
i ∥

∑
j∈Ni

σ
(
s̃ijh

(l)
j A(l) + b(l)

) (16)

whereNi is a collection of all neighbors of vertex i, s̃ij =
sij∑

k∈Ni
sik

is the normalized similarity score between vertex i and

vertex j, ∥ is the concatenation operator, A(l) and b(l) are deployed to learn the face aggregating principle in the l-th layer.
Therefore, there are three learnable parameters W(l), A(l) and b(l) in one layer of the cleaner. The network is implemented
with DGL [3] by PyTorch deep learning framework.
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