
Supplementary Material for
Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition

Yaobin Zhang, Weihong Deng*, Yaoyao Zhong, Jiani Hu
Beijing University of Posts and Telecommunications

{zhangyaobin, whdeng, zhongyaoyao, jnhu}@bupt.edu.cn

Xian Li, Dongyue Zhao, Dongchao Wen
Canon Innovative Solution (Beijing) Co., Ltd

{lixian, zhaodongyue, wendongchao}@canon-is.com.cn

Abstract

In this supplementary material, we present fully detailed information on 1) derivation of the meta-learning update (formula
11) in the paper; 2) the threshold-aware loss; 3) network structure of the GCN cleaner.

1. Meta-Learning Update
In the paper, we combine the meta-train and meta-test loss to get the final meta update loss as

Lmeta = γLtrain (θ) + (1− γ)Ltest (θ′) (1)

Recall the update equation of SGD, the parameter θ is updated as

θ ← θ − α
1

B

B∑
b=1

∇θLmeta
b (θ, θ′) (2)

The computation of Eq. 11 in the paper by backpropagation can be understood by the following derivation:

α 1
B

B∑
b=1

∇θLmeta
b (θ, θ′) = α 1

B

B∑
b=1

(
γ
∂Ltrain

b (θ)
∂θ + (1− γ)

∂Ltest
b (θ′)
∂θ

)
= γ·α

B

B∑
b=1

∂Ltrain
b (θ)
∂θ + (1−γ)·α

B

B∑
b=1

∂Ltest
b (θ′)
∂θ′ · ∂θ

′

∂θ

(3)

where ∂θ′

∂θ is determined in the meta-training phase and can be extracted from the sum, therefore the second term

(1−γ)·α
B

B∑
b=1

∂Ltest
b (θ′)
∂θ′ · ∂θ

′

∂θ = (1−γ)·α
B · ∂θ

′

∂θ

B∑
b=1

∂Ltest
b (θ′)
∂θ′

= (1−γ)·α
B

(
1− α

B

B∑
b=1

∂2Ltrain
b (θ)
∂θ2

)
·

B∑
b=1

∂Ltest
b (θ′)
∂θ′

= (1−γ)·α
B

B∑
b=1

∂Ltest
b (θ′)
∂θ′ − (1−γ)·α2

B2

B∑
b=1

∂2Ltrain
b (θ)
∂θ2

B∑
b=1

∂Ltest
b (θ′)
∂θ′

(4)

By substituting Eq. 3 and Eq. 4 into Eq. 2, the meta-update formula is as shown in the paper:

θ ← θ − γ · α
B

B∑
b=1

∂Ltrain
b (θ)

∂θ
− (1− γ) · α

B

B∑
b=1

∂Ltest
b (θ′)

∂θ′
+

(1− γ) · α2

B2

B∑
b=1

∂2Ltrain
b (θ)

∂θ2

B∑
b=1

∂Ltest
b (θ′)

∂θ′
(5)

1



It can be seen that three terms control the gradient descent of parameter θ. The first term optimize meta-train set with
learning rate γ · α towards θ′, then the second term optimize meta-test set on the updated model parameter θ′ with learning
rate (1− γ) · α. So that the parameter is trained to perform well on both meta-train and meta-test domains. The third term

applies gradient ascent on parameter θ′ with learning rate (1−γ)·α2

B

B∑
b=1

∂2Ltrain
b (θ)
∂θ2 , which is constrained by the second-order

derivative from meta-train domain. For instance, when the model reaches the local-minimum of the meta-train set, which
means the second-order derivative is positive, then the third term corrects the second term to step less on the meta-test set to
retain the learned knowledge from the meta-train set and to ensure convergence. Inversely, if the model is not stable on the
meta-train set, then it follows more on the meta-test set to find the space that is fitted to both domains.

2. Threshold-Aware Loss
To effectively train the threshold adapter T, a threshold-aware loss Lth is designed in the paper as below:

Lth = − 1

n

n∑
i=1

[
ŷt
i · log

(
1−

[
1− pt

i − [1− t−mfn]+
]
+

)
+

(
1− ŷt

i

)
· log

(
1−

[
pt
i − [t−mfp]+

]
+

)]
(6)

For sample
(
xt
i, ŷ

t
i

)
in class (Xt, Y t), we discuss the form of Lth in different situation in Algorithm 1. In fact, there are

only two cases (Eq. 7 and Eq.10) where the gradients with repect to t are valid. In Figure 1, we show a simplified situation

Algorithm 1 Deviation of the threshold-aware loss.

Require: Threshold-aware loss Lth, a sample
(
xt
i, ŷ

t
i

)
in class (Xt, Y t).

if ŷt
i = 0 then

if t > mfp then
if pt

i > (t−mfp) then

Lth = − log
(
1−

(
pt
i − (t−mfp)

))
(7)

else

Lth = 0 (8)

end if
else

Lth = − log
(
1− pt

i

)
(9)

end if
else

if t+mfn < 1 then
if pt

i < (t+mfn) then

Lth = − log
(
1−

(
t+mfn − pt

i

))
(10)

else

Lth = 0 (11)

end if
else

Lth = − log pt
i (12)

end if
end if

2



t

0 1

valid

mfp

(a) Negative samples

t

0 1

valid

mfn

(b) Positive samples

Figure 1: Training of threshold adaptor.

that the negative (triangle) and positive (rectangle) samples are well separated, but the threshold t is biased. For a noise
sample, which means ŷt

i = 0, if the predicted threshold t is greater than mfp and the predicted score for the sample pt
i is

greater than t −mfp, we treat it as a false positive sample. As shown in Figure 1a, the gradients of false negatives pull the
threshold t along the arrow in the positive direction. The threshold-aware loss is designed in cross-entropy way as in Eq. 7,
and the gradient to the parameter ϕ in the threshold adapter is

∇ϕLth = − ∇ϕt

1− (pt
i − (t−mfp))

(13)

Similarly, for a signal sample, if the predicted threshold t is less than 1 −mfn and the predicted score for the sample pt
i

is less than t + mfn, we treat it as a false negative sample. As shown in Figure 1b, the gradients of false positives pull the
threshold t along the arrow in the negative direction. The threshold-aware loss is designed in cross-entropy way as in Eq. 10,
and the gradient to the parameter ϕ in the threshold adapter is

∇ϕLth =
∇ϕt

1− (t+mfn − pt
i)

(14)

3. Graph Convolutional Network
In this paper, the GCN cleaner is designed as a binary vertex classification network, of which structure is designed similar

to a recent GCN-based data cleaning work [4]. Specifically, the GCN forward propagation function [1, 2] from layer l to
layer l + 1 of one sample vertex i on the graph is

h
(l+1)
i = σ

[
Fj∈Ni

(
h
(l)
j

)
W(l)

]
(15)

where h
(l)
i is the embedding representation of vertex i in the l-th layer, W(l) is a learnable linear transformation in the l-th

layer, and σ denotes the activation function, where sigmoid is used in the last layer, and ReLU is used in the other layers. F
is designed as the transforming function that aggregates vertex i and its neighbors with the similarity between vertices as the
weight, and outputs a new expression of the vertex:

Fj∈Ni

(
h
(l)
j

)
=

h(l)
i ∥

∑
j∈Ni

σ
(
s̃ijh

(l)
j A(l) + b(l)

) (16)

whereNi is a collection of all neighbors of vertex i, s̃ij =
sij∑

k∈Ni
sik

is the normalized similarity score between vertex i and

vertex j, ∥ is the concatenation operator, A(l) and b(l) are deployed to learn the face aggregating principle in the l-th layer.
Therefore, there are three learnable parameters W(l), A(l) and b(l) in one layer of the cleaner. The network is implemented
with DGL [3] by PyTorch deep learning framework.

3



References
[1] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in Neural Information

Processing Systems, pages 1024–1034, 2017.
[2] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.
[3] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao,

Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library: A graph-centric, highly-performant package for graph
neural networks. arXiv preprint arXiv:1909.01315, 2019.

[4] Yaobin Zhang, Weihong Deng, Mei Wang, Jiani Hu, Xian Li, Dongyue Zhao, and Dongchao Wen. Global-local gcn: Large-scale label
noise cleansing for face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7731–7740, 2020.

4


