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Abstract

In this supplementary material, we present fully detailed information on 1) derivation of the meta-learning update (formula

11) in the paper; 2) the threshold-aware loss; 3) network structure of the GCN cleaner.

1. Meta-Learning Update

In the paper, we combine the meta-train and meta-test loss to get the final meta update loss as
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Recall the update equation of SGD, the parameter 6 is updated as
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The computation of Eq. 11 in the paper by backpropagation can be understood by the following derivation:
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where 2 30 is determined in the meta-training phase and can be extracted from the sum, therefore the second term
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By substituting Eq. 3 and Eq. 4 into Eq. 2, the meta-update formula is as shown in the paper:
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It can be seen that three terms control the gradient descent of parameter §. The first term optimize meta-train set with
learning rate «y - a towards 6, then the second term optimize meta-test set on the updated model parameter #’ with learning
rate (1 —7) - . So that the parameter is trained to perform well on both meta-train and meta-test domains. The third term

_ A2 B 2 ptrain . . .
applies gradient ascent on parameter 6’ with learning rate a ;g) = 9 %592(0), which is constrained by the second-order
b=1
derivative from meta-train domain. For instance, when the model reaches the local-minimum of the meta-train set, which
means the second-order derivative is positive, then the third term corrects the second term to step less on the meta-test set to
retain the learned knowledge from the meta-train set and to ensure convergence. Inversely, if the model is not stable on the

meta-train set, then it follows more on the meta-test set to find the space that is fitted to both domains.

2. Threshold-Aware Loss

To effectively train the threshold adapter T, a threshold-aware loss £ is designed in the paper as below:
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For sample (!, §}) in class (X*,Y"), we discuss the form of £™ in different situation in Algorithm 1. In fact, there are
only two cases (Eq. 7 and Eq.10) where the gradients with repect to ¢ are valid. In Figure 1, we show a simplified situation

Algorithm 1 Deviation of the threshold-aware loss.

Require: Threshold-aware loss £, a sample (!, §}) in class (Xt Y?).
if §° = 0 then
if £ > my, then
if p! > (t — myp) then

£ = —log (1 — (p! — (t — mp))) (7
else
£h =0 (8)
end if
else
L" = ~log (1 - pj) ©)
end if
else
if t + mg < 1 then
if p! < (t + my,) then
L™ = —log (1 — (t + mpm — p})) (10)
else
Lh=0 (11)
end if
else
LM = —log pt (12)
end if
end if
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Figure 1: Training of threshold adaptor.

that the negative (triangle) and positive (rectangle) samples are well separated, but the threshold ¢ is biased. For a noise
sample, which means ;ﬁ = 0, if the predicted threshold ¢ is greater than my, and the predicted score for the sample p! is
greater than £ — my,, we treat it as a false positive sample. As shown in Figure 1a, the gradients of false negatives pull the
threshold ¢ along the arrow in the positive direction. The threshold-aware loss is designed in cross-entropy way as in Eq. 7,
and the gradient to the parameter ¢ in the threshold adapter is
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Similarly, for a signal sample, if the predicted threshold ¢ is less than 1 — mg, and the predicted score for the sample p!
is less than ¢ + my,, we treat it as a false negative sample. As shown in Figure 1b, the gradients of false positives pull the
threshold ¢ along the arrow in the negative direction. The threshold-aware loss is designed in cross-entropy way as in Eq. 10,
and the gradient to the parameter ¢ in the threshold adapter is
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3. Graph Convolutional Network

In this paper, the GCN cleaner is designed as a binary vertex classification network, of which structure is designed similar
to a recent GCN-based data cleaning work [4]. Specifically, the GCN forward propagation function [1, 2] from layer [ to
layer [ + 1 of one sample vertex ¢ on the graph is

htY =4 [Fjem- (h§l)) W(”} (15)

where hgl) is the embedding representation of vertex i in the I-th layer, W is a learnable linear transformation in the [-th
layer, and o denotes the activation function, where sigmoid is used in the last layer, and ReLU is used in the other layers. F’
is designed as the transforming function that aggregates vertex ¢ and its neighbors with the similarity between vertices as the
weight, and outputs a new expression of the vertex:

Fien, (hg”) — WS o (gijhg.”A(” +b(l>) (16)
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where N is a collection of all neighbors of vertex 7, §;; = L — is the normalized similarity score between vertex i and
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vertex j, || is the concatenation operator, A) and b(") are deployed to learn the face aggregating principle in the I-th layer.
Therefore, there are three learnable parameters W), A() and b(®) in one layer of the cleaner. The network is implemented
with DGL [3] by PyTorch deep learning framework.
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