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1. Fast VidTr

As a common practice, 3D ConvNets are usually tested
on 30 crops per video clip (3 spatial and 10 temporal) that
show performance boost while greatly increase the com-
putation cost. The VidTr has been proved that learn long-
term global spatio-temporal features better in a video clip,
thus we propose to sample the data in TSN style (seg-
ment video into N chunks and randomly pick one frame
from each chunk). During testing, we uniformly sample
N frames from the video regardless the length of the video,
and perform single-pass inference (center crop). Such de-
sign significantly reduce the inference computation and la-
tency caused by the dense sampling with a very small per-
formance drop (about 2%, see Table 1). Note that the R2D
and I3D based methods do not work well with sparsely sam-
pled frames, mainly because the convolution kernel has lim-
ited receptive field and can only aggregate features slowly.
If adjacent frames are too far away from each other, the tem-
poral convolution will not be able to establish the temporal
relations well. We compare our fast VidTr model with pre-

Model Input Res. GFLOPs Latency(ms) Top1

TSM [4] 8fTSN 256 330 170 74.1
3DEffi-B4 [3] 16× 5 224 69 NA 72.4
TEINet [5] 16× 4 256 990 1080 74.9
X3D-M [3] 16× 5 224 47 1100 74.6

F-VidTr-S 8× 8 224 1× 39 37 72.9
F-VidTr-M 16× 4 224 1× 59 53 74.7

Table 1: Comparison of VidTr to other fast networks. All
results from previous methods except for TEINet (30-crops)
are based on 10 temporal crop and center spatial crop. The
VidTr was achieved by uniformly sample 8/16/32 frames
temporally and center-crop spatially.

vious SOTA light-weight models including TSM, TEINet
and models from architecture search such as X3D on Ki-
netics 400 dataset and report the FLOPs, the latency and
top1 accuracy with 10 center crops (Table 1) The results
show that our proposed one-pass inference significantly out-

performs the competitors with less FLOPs, lower latency
and higher accuracy. The Fast VidTr (16 frames) is able to
outperform TSM (+0.6% accuracy, 70% less FLOPs, 68%
less latency); TEINet (-0.2% accuracy, 94% less FLOPs,
95% less latency), also note that the reported TEINet score
is based on 30 crop evaluation; and X3D-M (+0.1% ac-
curacy, 24% more FLOPs, 96% less latency). The results
proves that the VidTr is able to aggregate long-term spatio-
temporal features more effectively comparing the 3D Con-
vNets. It is worth mentioning that: 1. Even without con-
sidering the 10-crop evaluation required for ConvNets to
achieve reported scores, the VidTr is still able to inference
roughly at same speed comparing with TEINet and signif-
icantly faster than X3D. 2. X3D has low FLOPs but high
latency mainly due to the heavily use of depth convolution.

2. More Ensemble Results

We provide additional ensemble results on Kinetics 400
(Table 2) and charades (Table 3), showing that the VidTr
and 3D convolution based models can be complementary to
each other, ensemble VidTr and 3D convolution based net-
work significantly outperform the ensemble of any two 3D
convolution based models. Our results show that the result
level ensemble of I3D-101 and SOTA 3D model TPN-101
lead to about 1% accuracy boost and result level ensemble
of VidTr-S with TPN-101 lead to about 3% performance
boost. The similar conclusion can be draw from Charades
on multi-label activities, where the ensemble of I3D-101
and CSN-152 only gives 2.8%mAP boost, while ensemble
of VidTr-L with CSN-152 lead to SOTA (4.8%mAP boost
over CSN-152) performance on Charades datasets.

3. Error Analysis Details

We show the top 5 classes that gains performance boost
from VidTr and top 5 classes that got reduced performance
from VidTr. The results (Table 4) show that the I3D gen-
erally performance well on local and fast action while the
VidTr works well on actions require long-term temporal in-
formation. For example, the VidTr achieved 21.2 % ac-
curacy improvement over I3D on “catching fish” that re-
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Model input Ensemble input Top1 Top5

I3D50 [6] 16× 4 - - 75.0 92.2
I3D101 [6] 16× 4 - - 77.4 92.7
TPN101 [6] 16× 4 - - 78.2 93.4

I3D50 [6] 16× 4 I3D101 16× 4 77.7 93.2
TPN101[6] 16× 4 I3D50 16× 4 78.5 93.3
TPN101 [6] 16× 4 I3D101 16× 4 79.3 93.8

VidTr-S 8× 8 I3D50 16× 4 79.4 94.0
VidTr-S 8× 8 I3D101 16× 4 80.3 94.6
VidTr-S 8× 8 TPN101 16× 4 80.5 94.8

Table 2: More ensemble results on Kinetics-400 dataset.
We report top 1 and top5 accuracy (%) on validation set.

Model Input Res. Ensemble Chad

I3D-Inception [2] 64 × 1 256 - 32.9
SlowFast-101-NL∗ 32 × 4 256 - 44.7
CSN-152∗ 32 × 4 256 - 46.4

En-I3D-101 32 × 4 256 I3D-50 42.1
En-I3D-101 32 × 4 256 SF-101 47.9
En-I3D-101 32 × 4 256 CSN-152 49.2

En-VidTr-L 32 × 4 224 I3D-101 47.3
En-VidTr-L 32 × 4 224 SF-101 48.9
En-VidTr-L 32 × 4 224 CSN-152 51.2

Table 3: Results on Charades dataset. The evaluation met-
rics are mean average precision (mAP) in percentage. ∗ de-
notes the result that we re-produced.

quires long-term information from the status when the fish
is in water to the final status after the fish is caught (Figure
1a). The VidTr performs worse than I3D on the activities
that rely on slight motions (e.g., playing guitar, and shaking
head, Figure 1b)

4. Visualization Details
We visualized the VidTr’s separable-attention with at-

tention roll-out method [1]. We multiplied all the affin-
ity matrices between every two encoder layers and get
maskt ∈ R(WH+1)×(T+1)×(T+1) for the temporal roll-out
attention and masks ∈ R(T+1)×(WH+1)×(WH+1) for the
spatial roll-out attention. We selected the rows of class to-
ken from the roll-out attention for visualization as:

mask
′

t = mask
(1:,0,1:)
t ∈ RWH×T (1)

mask
′

s = mask(1:,0,1:)s ∈ RT×WH (2)

We multiplied mask
′

t and mask
′

s to represent the spatial-
temporal attention for visualize as:

mask
′

st = Re(mask
′

t)×mask
′

s (3)

Top 5 (+) Accuracy gain

making a cake +26.0%
catching fish +21.2%
catching or throwing baseball +20.8%
stretching arm +19.1%
spraying + 18.0 %

(a) Top 5 classes that VidTr works better than I3D.

Top 5 (-) Accuracy gain

shaking head -21.7%
dunking basketball -20.8%
lunge -19.9%
playing guitar -19.9%
tap dancing -16.3%

(b) Top 5 classes that I3D works better than VidTr.

Table 4: Quantitative analysis on Kinetics-400 dataset. The
performance gain is defined as the disparity of the top-1 ac-
curacy between VidTr network and that of I3D.

(a) video examples that VidTr performs better than I3D..

(b) video examples that VidTr performs worse than I3D.

Figure 1: Visualizations of video samples that VidTr works
better and I3D works better.

where mask
′

st is the spatio-temporal attention for visualize,
and Re denotes a reshape function. We threshold mask

′

s

2
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and mask
′

st by only highlighting the top 30% of values of
them, and attached them onto the original frames for visu-
alizing the spatio-only and spatio-temporal attentions.

4.1. More Visualizations

We first show more results of the VidTr’s separable-
attention with attention roll-out method [1] (Figure 2). We
find that the spatial attention is able to focus on infor-
mative regions and temporal attention is able to skip the
duplicated/non-representative information temporally.

We then show more results of the attention at 4th, 8th
and 12th layer of VidTr (Figure 3), we found the spatial at-
tention is getting to concentrate better when it goes to the
deeper layer. The attention did not capture meaningful tem-
poral instances at early stages because the temporal feature
relies on the spatial information to determine informative
temporal instances.

Finally we compared the I3D activation map and roll-
out attention from VidTr (Figure 4). The I3D mis-classified
the catching fish as sailing, as the I3D attention focused
on the people sitting behind and water. The VidTr is able
to make the correct prediction and the attention showed
that the VidTr is able to focus on the action related regions
across time.
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Figure 2: The spatial and temporal attention in Vidtr. The attention is able to focus on the informative frames and regions.
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Figure 3: The rollout attentions from different layers of VidTr.
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Figure 4: Comparison of I3D activations and VidTr attentions.
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