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1. Architecture Details of M3D-VTON
1.1. MPM Architecture

In MPM, all the three sub-branches share the encoders
EC and EA, which have the same structure and only dif-
fer in the number of input channels (3 for clothes, 29 for
agnostic person). They consist of four convolutional lay-
ers with stride 2 followed by two convolutional layers with
stride 1. The regressor R in the warping branch has a se-
quence of two 2-strided convolutional layers, two 1-strided
convolutional layers and one dense layer. The dense layer
regresses the x and y coordinate offsets of the TPS control
points and therefore has an output size of 2 × 3 × 3 = 18. The
decoder DS and DZ are used for the segmentation branch
and the depth estimation branch, respectively. They both
contain one 1-strided convolutional layer, succeed by four
upsample-convolutional blocks to output the 512×320 res-
olution results. See Table 1 for a detailed overview of this
module.

1.2. TFM Architecture

In TFM, we use the same 12-layer UNet generator GT as
in CP-VTON, which contains six 2-strided down-sampling
convolutional layers and six up-sampling layers. Each con-
volutional layer is followed by an Instance Normalization
layer and Leaky ReLU with a slope of 0.2. The 4 output
channels are split into 3 channels for the rendered person
and 1 channel for the fusion mask. See Figure 1 and Table 2
for the mask fusion process and the detailed architecture of
TFM.

1.3. DRM Architecture

For DRM, we adopt an UNet-like generator GZ with two
residual blocks similar to that in NormalGAN [4]. The out-
put channel is set to 2 (one for front depth, one for back
depth). See Table 3 for the detailed architecture of DRM.

2. Dataset Examples
Figure 3.(a) illustrates how the proposed dataset is con-

structed. We firstly apply PIFuHD [3], a state-of-the-

Encoder EC / EA
Layer Type Output Size
Input Target Clothes / Agnostic Representation (512,320,3/29)

Conv1 Conv 4x4 stride 2, ReLU, INorm (256,160,64)
Conv2 Conv 4x4 stride 2, ReLU, INorm (128,80,128)
Conv3 Conv 4x4 stride 2, ReLU, INorm (64,40,256)
Conv4 Conv 4x4 stride 2, ReLU, INorm (32,20,512)
Conv5 Conv 3x3 stride 1, ReLU, INorm (32,20,512)
Conv6 Conv 3x3 stride 1, ReLU, INorm (32,20,512)
Conv7 Conv 3x3 stride 1, ReLU, L2Norm (32,20,512)

Feature Correlation
Output Size (32,20,640)

Feature Concatenation
Output Size (32,20,1024)

Regressor R
Layer Type Output Size
Input Correlated Fature (32,20,640)

Conv1 Conv 4x4 stride 2, INorm, ReLu (16,10,512)
Conv2 Conv 4x4 stride 2, INorm, ReLu (8,5,256)
Conv3 Conv 3x3 stride 1, INorm, ReLu (8,5,128)
Conv4 Conv 3x3 stride 1, INorm, ReLu (8,5,64)
Linear Linear 50

Decoder DS / DZ

Layer Type Output Size
Input Concatenated Featrue (32,20,1024)

Conv1 Conv 3x3 stride 1, INorm, ReLu (32,20,512)
Upsample1 Upsample x2, Conv 3x3 stride 1, INrom, ReLu (64,40,256)
Upsample2 Upsample x2, Conv 3x3 stride 1, INrom, ReLu (128,80,128)
Upsample3 Upsample x2, Conv 3x3 stride 1, INrom, ReLu (256,160,64)
Upsample4 Upsample x2, Conv 3x3 stride 1, INrom, ReLu (256,160,2/20)

Table 1. The architecture of MPM. (INorm refers to Instan-
ceNorm).

TFM Generator GT

Layer Type Output Size
Input Input (512,320,9)

Conv1 Conv 4x4, LReLU (256,160,64)
Conv2 Conv 4x4, INorm, LReLU (128,80,128)
Conv3 Conv 4x4, INorm, LReLU (64,40,256)
Conv4 Conv 4x4, INorm, LReLU (32,20,512)
Conv5 Conv 4x4, INorm, LReLU (16,10,512)
Conv6 Conv 4x4, INorm, LReLU (8,5,512)

Upsample1 Upsample x2, Conv 3x3, INorm, ReLU, Skip connection from Conv5 (16,10,1024)
Upsample2 Upsample x2, Conv 3x3, INorm, ReLU, Skip connection from Conv4 (32,20,1024)
Upsample3 Upsample x2, Conv 3x3, INorm, ReLU, Skip connection from Conv3 (64,40,512)
Upsample4 Upsample x2, Conv 3x3, INorm, ReLU, Skip connection from Conv2 (128,80,256)
Upsample5 Upsample x2, Conv 3x3, INorm, ReLU, Skip connection from Conv1 (256,160,128)
Upsample6 Upsample x2, Conv 3x3 (512,320,4)

Table 2. The architecture of TFM.

art single-image 3D human reconstruction method, on
the MPV2D dataset [1] to obtain high-fidelity 3D human
meshes, before the meshes are orthographically projected
to front and back depth maps. A data point in our MPV3D
dataset is consequently represented by a four-tuple (person,



Figure 1. The mask fusion process in TFM. The fusion mask M̃ is
used to fuse Cw and Ip to the refined try-on result It, which can
be formulated as:It = Cw � M̃ + Ĩc � (1− M̃).

DRM Generator GZ

Layer Type Output Size
Input Input (512,320,12)

Conv1 Conv 3x3 stride=1, ELU (512,320,64)
Conv 3x3 stride=2, ELU, InstanceNorm (256,160,128)

Conv2 Conv 3x3 stride=1, ELU (256,160,128)
Conv 3x3 stride=1, ELU (256,160,128)

Conv 3x3 stride=2, ELU, InstanceNorm (128,80,256)
Conv3 Conv 3x3 stride=1, ELU (128,80,256)

Conv 3x3 stride=1, ELU (128,80,256)
Conv 3x3 stride=2, ELU, InstanceNorm (64,40,512)

Conv4 Conv 3x3 stride=1, ELU (64,40,512)
Conv 3x3 stride=1, ELU (64,40,512)
Conv 3x3 stride=2, ELU (32,20,1024)

Conv 3x3 stride=1, InstanceNorm (32,20,1024)
Res1 Residual module block (32,20,1024)
Res2 Residual module block (32,20,1024)

Upsample1 Upsample x2, skipp connection from Conv3 (64,40,1536)
Conv 3x3 stride=1, ELU (64,40,512)
Conv 3x3 stride=1, ELU (64,40,512)

Conv 3x3 stride=1, ELU, InstanceNorm (64,40,512)
Upsample2 Upsample x2, skipp connection from Conv2 (128,80,768)

Conv 3x3 stride=1, ELU (128,80,256)
Conv 3x3 stride=1, ELU (128,80,256)

Conv 3x3 stride=1, ELU, InstanceNorm (128,80,256)
Upsample3 Upsample x2, skipp connection from Conv1 (256,160,384)

Conv 3x3 stride=1, ELU (256,160,128)
Conv 3x3 stride=1, ELU (256,160,128)

Conv 3x3 stride=1, ELU, InstanceNorm (256,160,128)
Upsample4 Upsample x2 (512,320,64)

Conv 3x3 stride=1, ELU (512,320,64)
Conv 3x3 stride=1, ELU (512,320,64)
Conv 3x3 stride=1, Tanh (512,320,2)

Table 3. The architecture of the DRM.

clothing, front depth, back depth). More examples from our
dataset are shown in Figure 3.(b).

3. Limitation and Future Work
Monocular depth estimation is a highly ill-posed prob-

lem due to the well-known depth ambiguity. The proposed
M3D-VTON tends to fail in predicting depth for ambigu-

(a) (b)

Figure 2. Failure cases for our methods on ambiguous occluded
person parts. We display the front part and back part of the re-
constructed point cloud in red and blue, respectively. Our method
typically fails when poses are not represented well in the training
dataset.

ous person parts in poses that are rarely presented in the
training data. Figure. 2 illustrates monocular examples that
lack sufficient information for our method to perceive accu-
rate relative depth relations. Features extracted from cross
legs (Figure 2.(a)) and occluded bent arms (Figure 2.(b))
in 2D space are not reliable enough for depth estimator to
tell apart the front and back side, or to stitch them up. We
suspect that the results for those would improve with better
representation of diverse poses in the training data or more
prior information like the 3D pose, which we aim to solve
in future work.

4. Additional Results
4.1. 2D Texture Fusion Results

We show more qualitative comparisons of the texture fu-
sion results among our proposed M3D-VTON and other ex-
isting 2D try-on methods in Figure 4.

4.2. 3D Virtual Try-on Results

We show more qualitative comparison of the 3D virtual
try-on results between M3D-VTON and other hybrid meth-
ods in Figure 5. For rotated views, please see the supple-
mentary video.
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Data Examples

Figure 3. Procedure of how the MPV3D dataset is generated. (a) The three items enclosed in parentheses form one data data point (person,
clothing, front depth, back depth) in our dataset. (b) More data examples.
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Figure 4. Additional visual comparison with the other methods in the texture fusion module. The proposed M3D-VTON produces more
realistic results.
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Figure 5. Additional qualitative comparisons of 3D try-on results. The human mesh generated by the proposed M3D-VTON contains more
texture details and accurate shape compared with PIFu [2] and NormalGAN [4].


