
Supplementary Materials of Online Pseudo Label Generation by Hierarchical
Cluster Dynamics for Adaptive Person Re-identification

1. Notation Clarification

To distinguish from the main text, we use S-Fig, S-Tab,
and S-Eq to denote figures, tables and equations presented
in the supplementary material.

2. Pseudo-code of the proposed algorithm

Algorithm 1 summarizes the pseudo label generation of
our framework. Training procedure of our approach on do-
main adaptive person ReID and unsupervised person ReID
are presented in Algorithm 2 and Algorithm 3, respectively.
Both tasks adopt the same pseudo label generation strat-
egy. The only difference between the training process of do-
main adaptive person ReID and unsupervised person ReID
is whether wk is included in Eq. 1. For adaptive ReID, there
are prototypes of the source domain, i.e., wk, but there are
no prototypes of the source domain in unsupervised person
ReID.

3. Comparison with states of the art in unsu-
pervised image classification

Recent years have witnessed the great progress in unsu-
pervised learning on image classification [8, 10, 7, 3, 2, 9].
We applied several recent methods, such as BYOL [6],
MoCo [7] and ODC [9], on unsupervised person ReID
tasks. Specifically, for ODC, we change the number of pre-
diction classes to 500 following MMT [4] and adopt the
same sampler strategy used in our approach, i.e., each mini-
batch contains 64 target domain images of at least 16 pseudo
classes (4 images for each cluster or 1 image for each out-
lier). Moreover, the backbone for the encoder, data aug-
mentation and network optimization method are replaced
by strategies mentioned in implementation details (Sec 5.1).
The results presented in S-Table 1 indicate that methods for
unsupervised image classification fail to achieve competi-
tive results on unsupervised person ReID tasks. The fail-
ure of BYOL and MoCo is due to the fact that they are all
based on the paradigm of instance discrimination and no
cluster base information is involved. Since person ReID
struggles to explore the intra-class and inter-class relations,
these instance-based methods fail in unsupervised person

Algorithm 1 Pseudo label generation of the proposed algorithm
in one iteration
Require: target domain mini-batch Bt;
Require: a hierarchical label bankH = {y1i , y2i , ..., yHi }Nt

i=1;
Require: hyper-parameter threshold σ and K label anchors for

cluster dynamics;
for j in Bt do

Find the nearest neighbor p of sample j;
Update labels {ylj}Hl=1 ← {ylp}Hl=1 ;
for h in [1, H] do

# cluster split
Choose up to K label anchors in cluster yhj ;
Construct the normalized affinity matrix Ss by Eq. 3;
Compute the closed-form solution (Ph

s )
∗ with Ss by

Eq. 2;
Split cluster yhj by Eq. 4;
# cluster merge
Construct the cluster set Ohi containing clusters to be

merged by Cluster Merge in Sec. 4.2.
Compute the center feature collection ohi of Ohi .
Construct the normalized affinity matrix Sm by Eq. 3;
Compute the closed-form solution for cluster merge

(Ph
m)∗ = (ph1 , p

h
2 , ..., p

h
n) with Sm by Eq. 2;

Merge yhj with clusters {yhq |phj,q > σ};
end for

end for

Algorithm 2 Training procedure of the proposed method on do-
main adaptive person ReID
Require: Source domain data Ds and target domain data Dt;
Require: momentum m for updating feature bank B;

Initialize the backbone encoder fθ with ImageNet-pretrained
ResNet-50;
Initialize feature bank B with features extracted by fθ;
Initialize the hierarchical label bankH by DBSCAN;
for i in [1, num iteration] do

Get mini-batch Bs ⊂ Ds and Bt ⊂ Dt;
Encode features Fs, Ft for Bs,Bt with fθ;
Compute the contrastive loss with Fs, Ft by Eq. 1;
Update B with m in a momentum way as [7];
Update hierarchical label banksH for samples inBt follow-

ing Algorithm 1;
end for



Algorithm 3 Training procedure of the proposed method on un-
supervised person ReID
Require: Unlabeled data Dt;
Require: momentum m for updating feature bank B;

Initialize the backbone encoder fθ with ImageNet-pretrained
ResNet-50;
Initialize feature bank B with features extracted by fθ;
Initialize the hierarchical label bankH by DBSCAN;
for i in [1, num iteration] do

Get mini-batch Bt ⊂ Dt;
Encode features Ft for Bt with fθ;
Compute the contrastive loss with Ft by Eq. 1;
Update B with m in a momentum way as [7];
Update hierarchical label banksH for samples inBt follow-

ing Algorithm 1;
end for

S-Table 1. Comparison with state-of-the-art methods in unsuper-
vised images classification on unsupervised person ReID tasks.
Implementation of all the methods are based on authors’ code.

Methods
Market-1501 DukeMTMC-reID

mAP R1 R5 mAP R1 R5

BYOL [6] 4.9 11.8 21.8 2.7 5.3 10.3
MoCo [7] 6.1 12.8 27.1 5.6 10.7 22.0
ODC [9] 20.0 38.8 54.9 15.7 24.7 39.1

Ours 78.1 91.1 96.4 65.6 79.8 88.6

ReID. The conclusion is similar to that in [5]. Furthermore,
we compare our method with a clustering-based method,
ODC [9]. ODC is also an online clustering algorithm with
the advantage of a deep clustering framework [1], and there-
fore it outperforms instance-based methods [6, 7] by ap-
proximate 15%. However, the clustering in ODC is actually
K-Means algorithms and it heavily relies on a hyperparam-
eter, i.e., the number of clusters. Considering the difficulty
of determining the number of people in the ReID dataset
and the unchangeable number of clusters in K-Means, ODC
achieves much lower performances than our method.

4. More Sensitivity Analysis of αs, αm

We explore the influence of αs, αm and present the per-
formance in terms of mAP in ablation study (Sec 6.3). In
this section, more detailed results, i.e., mAP, rank-1 and
rank-5, are shown in S-Table 2 and S-Table 3. The results
of mAP and Rank 1 show that the performance of adap-
tive ReID increases when αs and αm increase. Accord-
ing to Eq. 2, larger αs and αm indicate considering more
neighborhood information in label propagation for cluster
split and cluster merge, respectively. Specifically, we find
the performance of our proposed method is more sensitive
to αm in cluster merge than αs in cluster split. The clus-
ter merge often tackles more visually different images than

S-Table 2. Performance comparison with different αM . D→M de-
notes adapting DukeMTMC-reid to Market-1501. M→D denotes
adapting Market-1501 to DukeMTMC-reid.

αM
D→M M→ D

mAP R1 R5 mAP R1 R5

0.1 66.9 84.7 93.1 56.4 72.6 82.2
0.3 68.0 83.8 94.1 58.5 72.8 83.8
0.5 69.2 84.2 94.1 63.3 76.8 87.2
0.7 70.7 84.9 94.6 64.6 78.8 87.9
0.9 78.9 91.1 96.6 69.0 82.6 89.9
0.99 80.0 91.5 96.3 70.1 82.2 89.7

S-Table 3. Performance comparison with different αS . D→M de-
notes adapting DukeMTMC-reid to Market-1501. M→D denotes
adapting Market-1501 to DukeMTMC-reid.

αS
D→M M→ D

mAP R1 R5 mAP R1 R5

0.3 76.1 89.6 95.2 68.8 81.5 90.0
0.5 76.3 89.8 95.4 69.0 82.4 90.4
0.7 76.4 90.2 95.7 69.2 82.1 90.0
0.9 77.1 90.0 96.0 69.2 82.0 89.5
0.95 77.9 90.7 96.0 69.5 82.3 90.4
0.99 80.0 91.5 96.3 70.1 82.2 89.7

cluster split, which makes neighborhood affinities are more
important when propagating labels by Eq. 2.

5. Visualization of hierarchical structure of on-
line label generation

In the ablation study (Sec. 6.2), we visualize hierarchical
clustering results on DukeMTMC-reID dataset. In this sec-
tion, more visualization examples are shown in S-Figure 1.
We set the total number of levers H = 3 in all experiments.
S-Figure 1(a) illustrates the hierarchical clustering results
in DukeMTMC-reID and S-Figure 1(b) illustrates the hier-
archical clustering results in Market-1501. The visualiza-
tion in S-Figure 1 indicates hierarchical clustering results
share similar patterns in both datasets and therefore empir-
ically justifies the generality and effectiveness of our hier-
archical online pseudo label generation method. At the first
level h=1, images tend to share high similarities within the
same cluster, such as the same human posture or the same
background. As the level increases to 2, samples with the
same background or the same human posture are gathered
together. With regard to the highest level h = 3, images of
the same identity but with different backgrounds and human
postures are clustered since they are semantically similar.



(a) Visualization of hierarchical clustering results on DukeMTMC-reID when setting total level H = 3.

(b) Visualization of hierarchical clustering results on Market-1501 when setting total level H = 3.
h=1 h=2 h=3

S-Figure 1. Visualization examples on DukeMTMC-ReID dataset and Market-1501 dataset. Different types of lines stand for clustering
results at different levels.
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