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1. Discussion on /-5 Eq. (2)

The proposed Icgs is a lower bound for I;5p with
same definition of joint distribution and product of
marginal distribution. Specifically, following the defi-
nition used in I¢g, I;5p could be rewritten as
Irsp(h?,h?) =sup —E(; jyeqlog(1 + exp(—M (hY, hY

— B jgolog(1 + exp(M(hY,h2)))
Lemma 1. Iog is a lower bound for I j5p.

Proof. Since —log(1 + x) is convex, based on Jensen’s
inequality, we know

—Ei jealog(l+ga.5)) > —log(1 4 E j)eadi))-
By replacing g(; ;) with exp(—M(hY, hz’)) and
exp(M (hY, hé’)) respectively, and substituting them to
Ics and I5sp, we directly get Ics < Ijsp. We thus
complete our proof. O

2. Algorithm for CSAD

CSAD requires pretraining for target classifier, bias
classifier, and mutual information estimator. We provide
the complete algorithm for CSAD in Algorithm 1.

3. Algorithm for Optimizing Eq. (2)

We provide the details on optimizing Eq. (2) with
joint content and local structural learning in Algorithm
2.

*This work was done when Haofu Liao was at the University of
Rochester.

Algorithm 1 Learning Bias-Invariant Representation

Input: Training data z = {(x;,v:,b:)};
1: # STEP 1: Pretrain Feature Extractor and Tar-
get Branch
2: Pretrain F', DY, and PY by minimizing the target
prediction loss until convergence;
# STEP 2: Pretrain Bias Branch
4: Pretrain D® and P® by minimizing the bias predic-
tion loss until convergence;
5. # STEP 3: Pretrain Mutual Information Estima-
tor
6: Pretrain M to maximize Eq. (2) until convergence;
7: # STEP 4: Iteratively Update
8
9
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: while not converge do

Sample a minibatch of data;

10:  Update F', DY, and PY to minimize the target
predication loss;

11: fork=1,...,Kdo

12: Update D® and P’ to minimize the bias predi-

cation loss;

13:  end for

14 fork=1,...,Kdo

15: Update M to maximize Eq. (2);

16:  end for

17 # Adversarial Debiasing

18:  Update F' to minimize Eq. (2);

19: end while

4. Dataset and Network Structure

We provide detail structure of used network for dif-
ferent datasets. We omit the activation function (ReLU
Layer) of the network for convenience.



Algorithm 2 Cross sample Mutual Information Estima-

tor M

Input: Target representation h¥ = {h!}, Bias repre-
sentation h® = {h%};

1: STEP I: Content Similarity Learning

2: Calculate content similarity as Eq. (3)

3: STEP II: Structural Similarity Learning

4: Calculate the pairwise similarity matrices for h¥ and
h® by Eq. (4), and then normalize the matrices by
Eq. (5) to obtain the edge EY and E°.

s: Conduct RWR on the obtained graph G¥ and G re-
spectively to obtain r and r? for the i-th sample by
Eq. (7);

6: Normalize the Tf and rf»’ for the ¢-th sample;

7: Calculate the structural similarity s¥(7,j) by Eq.
3);

8: STEP III: Joint Similarity Learning

9: Obtain the joint similarity by Eq. (9);

10: STEP IV: Cross Sample Mutual Information Es-
timation
11: Update M to maximize Eq. (2).

4.1. Colored Mnist

The Colored MNIST dataset [4] introduces color bias
to the standard MNIST dataset [0], and the digits are
class-wisely colored for the training set following [4].
We assign a mean color for each class of digit. Then, for
each training image, its color is sampled from a normal
distribution with the mean set as the class-wise mean
color and a predefined variance o2. We vary the vari-
ance o2 from 0.02 to 0.05 to have a different amount
of bias in the training data, and smaller o2 represents
more color bias. To have a bias-free testing set, testing
images are generated similarly to the training ones but
with the mean randomly sampled from ten mean colors.
The color label is grouped into eight different categories
for each RGB channel following [4].

The used network for target and bias task follows [9].
For detail we adopt two convolutional layers with kernel
size as 5 and 64 filters as feature extractor. The dis-
entangler is implemented with a fully connected layer
(1024-128). Class Predictor is implemented with two
fully connected layer as (128-64-10). Bias Predictor
is also implemented with two fully connected layer for
each color as (128-64-8). The mutual information esti-
mator is a three-layer fully connected network as (128-
64-32-32).
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Figure 1. The age distribution of PD and non-PD groups for the
mPower dataset. The dataset is biased on age, as PD patients
are typically elder.

4.2. IMDB face

The IMDB face dataset [10] is a face image dataset
that contains 460, 723 face images of 20, 284 celebrities
with their information regarding age and gender. Fol-
lowing [9], a pretrained network on Image [3] for age
and gender annotation is used to filter out the misan-
notated images, resulting a cleaned dataset of 112,340
samples. We aim to conduct gender prediction on an
age-biased training set. Likewise, the cleaned images
are divided into three subsets, namely: Extreme bias 1
(EB1): women aged 0-29, men aged 40+; Extreme bias
2 (EB2): women aged 40+, men aged 0-29; Test set:
20% of the cleaned images aged 0-29 or 40+. As a re-
sult, EB1 and EB2 are biased towards the age, since EB1
consists of younger females and older males and EB2
consists of younger males and older females.

Follow [4], feature extractor is implemented with a
pretrained ResNet-18 by modifying the last fc layer as
(512-256). The disentangler is a fully connected layer as
(256-64). The class predictor is a fully connected layer
as (64-1) and the bias predictor is also a fully connected
layer as (64-12). The mutual information estimator is a
three-layer fully connected network as (64-64-32-32).

4.3. CelebA

Follow [8], feature extractor is implemented with a
pretrained ResNet-18 by modifying the last fc layer as
(512-256). The disentangler is a fully connected layer as
(256-64). The class predictor is a fully connected layer
as (64-1) and the bias predictor is also a fully connected
layer as (64-1). The mutual information estimator is a
three-layer fully connected network as (64-64-32-32).
We train the model with a balanced batch to alleviate
the unbalance problem.



4.4. mPower

We illustrate the age bias for mPower dataset in Fig.
1. We can observe that most PD’s patients are the elder,
and it is thus necessary to remove the age bias for PD’s
diagnosis. We conduct adversarial debiasing for the fin-
ger tapping task, where patients will tap their phones
alternatively with two fingers. To evaluate the debi-
asing methods, we contrive a bias-free testing set fol-
lowing the settings of Colored MNIST and IMDB face.
For detail, we divide the age into 6 different intervals
{45 — 49,50 — 54,55 — 59,60 — 67,65 — 69, 70+}, and
then draw 30 PD and NC subjects from each interval as
the testing set (360 samples in total). The training set
contains all the other 1044 patients.

Feature extractor is implemented with a 6-layer TCN
with kernel size as 5 and 64 filters. The disentangler is a
fully connected layer as (64-64). The class predictor is
a fully connected layer as (64-1) and the bias predictor
is also a fully connected layer as (64-8). The mutual in-
formation estimator is a three-layer fully connected net-
work as (64-64-32-32).

4.5. Adult

To comprehensively evaluate the performance, vari-
ous metrics have been applied following [ 1 1]. First, Bal-
anced accuracy (BA) is used for imbalance data. More-
over, we evaluate the model with counterfactual sam-
ples by flipping the attributes of spouse (gender&Race)
for testing records, and calculate spouse (gender&Race)
consistency S-Con (GR-Con) by the predication con-
sistency between original and altered samples [I1].
We also report group fair metrics provided by AIF360

[1] with respect to race or gender, including Gap?;MS,
RMS max max

Gapp ', Gapg, and Gapy ", and please refer to [11]
for their definitions.

The baseline used by other methods is a two-layer
MLP as (41-100-2) [11]. We adopt a three-layer MLP
as (41-64-32-2). We note that the three-layer MLP
has fewer parameters than the two-layer baseline and
achieves competitive performance. For the proposed
methods, we discompose the three-layer baseline into
three modules. Feature extractor is a fully connected
layer as (41-64). The disentangler is a fully connected
layer as (64-32). The class predictor is a fully connected
layer as (32-1) and the bias predictor is also a fully con-
nected layer as (32-2). The mutual information estima-
tor is a two-layer fully connected network as (32-32-32).
We construct a balanced minibatch for Adult which con-
tains same number of samples from each target class fol-
lowing [11].

5. Implementation Details

We use Adam to train our model [5]. We set K = 10,
7 =10 Eq.(5), c = 0.5 Eq. (6), and a = 1 Eq. (9), and
search A € {0.1,0.5,1,10}. We would like to empha-
size that A is particularly important for our method to
achieve a fairness-accuracy balance. Specifically, over
large A would force the feature extractor to learn little
information, and small ones would lead to little influ-
ence on the pretrained target classifier. We conduct ex-
periments on Adult to show the trade-off for our method
in Table 1. The A is default set to 10 for Adult. As
we increase A, our model focuses more on fairness with
reduced accuracy. We note that the fairness-accuracy
trade-off is still an open and significant problem for de-
biasing and fairness [7, 2]. We will study the problem
comprehensively in the future.

Table 1. We vary the A to study the accuracy-fairness trade-
off of our method on Adult dataset. BA is balanced accuracy,
while the other four metrics are used to evaluate the fairness.

A BA?T GapgMS + Gapl}?MS 1 Gapi™ | Gapp™ |

1 814 118 061 130 067
2 807 .080 053 .109 055
10 80.4 .060 042 066 058
20 78.9 058 035 065 .050
40 785 063 .030 088 042
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