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1. Details of the Proving for the relations

We give the details of the relationship between other
nonlocal operators in the spectral view discussed in our
paper (Sec.3.2). In the following proving, we assume that
X ∈ RN×C, Z = g(X) = XWZ , Mij = f(Xi,Xj).
All the normalized term uses the inverse of the degree 1/di
where di =

∑
j f(Xi,Xj). We also merge the output of the

operators with the weight kernel W ∈ RN×C and defines
it as O for consistency. Thus the target formulations in this
section are a bit different with the definition in their own
papers.

1.1. Nonlocal Block

The Nonlocal (NL) Block in the spectral view is the same
as defining the graph G = (V,D−1M ,Z) and then using
the second term of the Chebyshev Polynomail to approxi-
mate the graph filter.

Proof. The NL operator defined in [9] can be formulated as:

Oi,: =

∑
j

[
f(Xi,:,Xj,:)g(Xj,:)

]
∑
j f(Xi,:,Xj,:)

W (1)

To unify it by our spectral view, we firstly define the graph
G = (V,A,Z) to represent the graph structure of the NL
operator, where the affinity matrix A is calculated by:

A = D−1M M , M = f(Xi,:,Xj,:) (2)

Thus, each element of the affinity matrix A is:

Aij = (D−1M M)ij =
f(Xi,:,Xj,:)∑
j f(Xi,:,Xj,:)

(3)

Based on Theorem.1, when using Chebyshev polyno-
mails to approximate the generalized graph filter Ω and only
choosing the second term, it becomes :

F (A,Z) = AZW (4)

Then taking Eq. (3) into this equation, we can get the
formulation of the NL operator:

Fi,:(A,Z) =

∑
j

[
f(Xi,:,Xj,:)g(Xj,:)

]
∑
j f(Xi,:,Xj,:)

W (5)

1.2. Nonlocal Stage

The Nonlocal Stage (NS) in the spectral view is the same
as defining the graph G = (V,D−1M M ,Z) and then using
the 1st-order Chebyshev Polynomail to approximate the
graph filter with the condition W1 = W2 = −W.

Proof. The NS operator given defined in [8] can be formu-
lated as:

Oi,: =

∑
j

[
f(Xi,:,Xj,:)(Zj,: −Zi,:)

]
∑
j f(Xi,:,Xj,:)

W (6)

Similar with the proof of NL, we can get each element of
the affinity matrix A as:

Aij = (D−1M M)ij =
f(Xi,:,Xj,:)∑
j f(Xi,:,Xj,:)

(7)

The graph filter Ω on G is approximated by the Chebyshev
polynomail. When using the 1st-order Chebyshev Approxi-
mation, it becomes:

F (A,Z) = ZW1 −AZW2 (8)

When sharing the weight for W1 and W2, i.e W1 =
W2 = −W, we get:

F (A,Z) = AZW −ZW (9)

Then, taking it Z = g(X) = XWZ and Eq. (7) into
this equation, it becomes:

Fi,:(A,Z) =

∑
j

[
f(Xi,:,Xj,:)Zj,:W

]
∑
j f(Xi,:,Xj,:)

−ZiW (10)

1
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Due to the fact that
∑

j f(Xi,:,Xj,:)∑
j f(Xi,:,Xj,:)

= 1, we can get the
formulation of the NS operator:

Fi(A,Z) =

∑
j

[
f(Xi,:,Xj,:)Zj,:W

]
∑
j f(Xi,:,Xj,:)

−
∑
j f(Xi,:,Xj,:)∑
j,: f(Xi,:,Xj,:)

Zi,:W

=

∑
j

[
f(Xi,:,Xj,:)(Zj,: −Zi,:)

]
∑
j f(Xi,:,Xj,:)

W (11)

1.3. Double Attention Block

The Double Attention Block in the spectral view is the
same as defining the graph G = (V,M ,Z) and then using
the second term of the Chebyshev Polynomail to approxi-
mate the graph filter, i.e F (A,Z) = MZW:

Proof. The A2 operator defined in [1] can be formulated as:

O = σ(θ(X))σ(φ(X)T )g(X) = fa(Xi,:,Xj,:)XW
(12)

The difference between the double A2 operator and the
NL operator is only the kernel function that calculating the
affinity matrix [1]. Thus we can use the similar proving
strategy to reformulate the A2 operator into the spectral only
by change the affinity matrix as:

A = M = σ(XWφ)σ(XWψ) (13)

1.4. Compact Generalized Nonlocal Block

When grouping all channels into one group, the Com-
pact Generalized Nonlocal Block in the spectral view is the
same as defining the graph G = (Vf ,D−1

MfM
f , vec(Z))

and then using the second term of the Chebyshev Poly-
nomail to approximate the graph filter, i.e F (A,Z) =
D−1
MfM

fvec(Z)W . Note that due to the dimension of the
input feature vec(Z) ∈ RNC×1 which is different with other
nonlocal operators, here we uses Mf ,Af ∈ RNC×NC for
clearity.

Proof. The CGNL operator defined in [10] can be formu-
lated as:

vec(O) = f(vec(X), vec(X))vec(Z)W (14)

For simplicity, we use x to represent vec(X), thus the
target becomes:

o = f(x,x)zW (15)

Then, we define the graph G = (Vf ,Af , z), where the
set Vf contains each index (including position and channel)
of the vector x. The affinity matrix A is calculated by:

Af = Mf , Mf = f(x,x) (16)

The graph filter Ω on G is approximated by the Chebyshev
polynomials. When only choosing the second term, we can
get the formulation of the CGNL operator:

F (Af , z) = AfzW = f(x,x)zW (17)

1.5. Criss-Cross Attention Block

The Criss-Cross Attention Block in the spectral view is
the same as defining the graph G = (V,D−1C�MC�M ,X)
and then using the second term of the Chebyshev Polynomail
to approximate the graph filter with node feature X:

Proof. The criss-cross attention operator defined in [4] can
be formulated as:

Oi,: =
∑
j∈Vi

AijΦj,: =

∑
j∈Vi f(Xi,:,Xj,:)Xj,:∑
j∈Vi f(Xi,:,Xj,:)

W

where the set Vi is collection of feature vector in V which
are in the same row or column with position u.

Then, we define the graph G = (V, Ã,X) to represennt
the criss-cross attention operator in the spectral view. The
affinity matrix Ã is calculated by:

Ã = D−1C�MC �M , M = f(Xi,Xj)

Cij =

{
1 j ∈ Vi

0 else
,

We use M̃ to represent C �M , i.e. M̃ = C �M .
Thus, each element of the affinity matrix M̃ is:

M̃ij =

{
Mij j ∈ Vi

0 else
,

Thus, we can get the definition of each element in the
affinity matrix Ã:

Ãij =

{
f(Xi,Xj)∑

j∈Vi f(Xi,Xj)
, j ∈ Vi

0, else
,

When using the Chebyshev polynomials to approximate
the generalized graph filter Ω on G and choose the second
term, it becomes:

2
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F (Ã,X) = ÃXW (18)

When taking Eq.18 into this formulation, we can get the
formulation of CC operator:

Fi,:(Ã,X) = (

∑
j∈Vi f(Xi,:,Xj,:)Xj,:∑
j∈Vi f(Xi,:,Xj,:)

+
∑
j /∈Vi

0Xj,:)W

=

∑
j∈Vi f(Xi,:,Xj,:)Xj,:∑
j∈Vi f(Xi,:,Xj,:)

W

(19)

2. Defining Novel Nonlocal with Caylay Filter
As discussed in our paper, the five existing nonlocal-based

blocks uses the Chebyshev filter as the generalized graph
filter defined in our spectral view. However the Chebyshev
filter need to map the eigenvalue to range [−1, 1] in a linear
manner, which makes its spectral smooth or lost the interest
signal on a small frequency band [6]. This makes the result
feature map tend to ignore the large object (having high
correlation to a large amount of positions). Cayley filter
solves this problem by an additional spectral zoom parameter
h, which can help to select interest frequency band.

To defines novel nonlocal block based on Caylay filter
with the help of on our proposed framework, we can replace
the generalized graph filter g(Λ) in Theorem. 1 by the kth-
order Caylay filter, which is formulated as:

gθ,h(Λ) = θ0+2Re{
k∑
j=1

θ1(hΛ−iI)j(hΛ+iI)−j} (20)

where ”Re” means the real part of an imaginary number, i
is the imaginary unit, h and θ are parameters that can be
learned by SGD. Taking this into Theorem. 1, we get the
CaylaySNL operator with the help of Jacobi approximation
[6]:

Fcl(A,Z) = θ0Z+2

k∑
j=1

θ1(hL−iI)j(hL+iI)jZ (21)

where L is the graph Laplacian of A. Note that, eigenvalues
of L are all real, so we can remove the ”Re” and take L =
UΛU> into this polynomial form equation. Finally, we uses
the 1st-order for Eq. 21 for high computational efficiency
and extend it to multi-channel condition:

Fcl(A,Z) = ZW1 + 2(L2ZWh2 + Z)W2 (22)

Similar with other nonlocal-based operator, when adding
residual connection, the CaylaySNL operator becomes the
CaylaySNL block. Note that the Caylay filter do not require
the affinity matrix A is normalized, so we just uses the
sigmoid to make the elements of affinity matrix higher than
0. The CaylaySNL block can be formulated as:

Y = X + ZW1 + 2(L2ZWh2 + Z)W2 (23)

s.t. A = D
− 1

2

M̂
M̂D

− 1
2

M̂
, M̂ = (M + M>)/2

Remark 1. Different with all existing nonlocal-based blocks
that derivated from Chebyshev filter, the proposed ChebySNL
utilizes the Caylay filter which can better concerns the small
frequency band, i.e. object with large scale.

We validate the proposed CaylaySNL on CIFAR-100
shown in Table. 1. It can be see that, benefited form concern-
ing the spectral zoom, the Caylay can generate the highest
performance (0.31 higher than the proposed SNL). This
shows the efficient that using other type graph filter to define
nonlocal-based blocks.

Table 1: The Performances of Caylay SNL on CIFAR-100

Models Top1 (%) Top5 (%)
PreResNet56 75.33↑0.00 93.97↑0.00

+ NL 75.29↓0.04 94.07↑0.10

+ NS 75.39↑0.06 93.00↓0.97

+ A2 75.51↑0.18 92.90↓1.07

+ CGNL 74.71↓0.62 93.60↓0.37

+ SNL 76.41↑1.08 94.38↑0.41

+ CaylaySNL 76.72↑1.39 94.54↑0.57

3. External Experiments
3.1. Action Recognization

We also conduct the experiments on UCF-101 dataset
with other state-of-the-art action recognition models in
our supplementary materials including the P3D [7], the
MARS [2], and the VTN [5]. For Pseudo 3D Convolu-
tional Network (P3D) and Motion-augmented RGB Stream
(MARS), our SNL block are inserted into the P3D right
before the last residual layer of the res3. For the Video
Transformer Network (VTN), we replace its multi-head self-
attention blocks (paralleled-connected NL blocks) into our
SNL blocks. We use the model pre-trained on Kinetic dataset
and fine-tuning on the UCF-101 dataset. Other setting such
as the learning rate and training epochs are the same as the
experiment on I3D in our paper. We can see that all the
performance are improved when adding our proposed SNL
model especially when training end-to-end on the small-
scale dataset. In sum, our SNL blocks have shown superior

3
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Table 2: Experiments on Video Person Re-identification

Mars ILID-SVID PRID-2011
Models Rank1(%) mAP(%) Models Rank1(%) mAP(%) Models Rank1(%) mAP(%)
ResNet50 82.30↑0.00 75.70↑0.00 ResNet50 74.70↑0.00 81.60↑0.00 ResNet50 86.50↑0.00 90.50↑0.00

+ NL 83.21↑0.91 76.54↑0.84 + NL 75.30↑0.60 83.00↑1.40 + NL 85.40↓1.10 89.70↓0.80

+ SNL 83.40↑1.10 76.80↑1.10 + SNL 76.30↑1.60 84.80↑3.20 + SNL 88.80↑2.30 92.40↑1.90

results across three SOTAs (the VTN and MARS) in the
action recognition tasks (0.30% improvement with VTN,
0.50% improvement with MARS).

Table 3: Experiments with state-of-the-art backbone

Models Top1(%)
P3D[7] 81.23↑0.00

P3D + Ours 82.65↑1.42

VTN[5] 90.06↑0.00

VTN + Ours 90.34↑0.30

MARS[2] 92.29↑0.00

MARS + Ours 92.79↑0.50

3.2. Person Re-identification

The experiments for video person re-identification are
conducted on Mars, ILID-SVID and PRID-2011 datasets.
For the backbone, we follow the strategy of [3] that use the
temporal pooling to fuse the spatial-temporal features. Note
that the models are totally trained on ilidsvid and prid2011
rather than fine-tuning the pretrained model on Mars. From
Table. 2 (Mars), we can see that our SNL can generate 1.10%
improvement both on Rank1 and mAP, which are both higher
than the original nonlocal block (0.91% on Rank1, 0.84% on
mAP). We also generate experiments on two relatively small
datasets: ILID-SVID datasets which contains 300 pedestri-
ans captured by two cameras with 600 tracklets; PRID-2011
dataset which contains 200 pedestrians captured by two cam-
eras with 400 tracklets. In Table. 2 (ILID-SVID), our model
can generate 1.60% and 3.20% improvements on the Rank1
and mAP respectively for the ILID-SVID dataset. Moreover,
on PRID-2011, we get a significant improvement (2.30% on
Rank1, 1.90% on mAP) as shown in Table. 2 (PRID-2011).

3.3. Fine-grained Image Classification

The experiments for the fine-grained classification are
generated on the Birds-200-2011 (CUB-200) dataset which
contains 11, 788 images of 200 categories of different birds.
We use 5, 994 images as the training set and 5, 794 images
as the testing set [10]. We use the ResNet50 model pre-
trained on ImageNet as the backbone and train the models
for 110 epochs with the initial learning rate 0.1 which is
subsequently divided by 10 at 31, 61, 81 epochs. Table 4

(CUB-200) shows that our model can generate (0.59%) im-
provement. Compared with the CGNL block concerning
channel-wise relations, our SNL is just a bit lower in Top-1
(0.12%). That is because the dependencies among chan-
nels play an important role in the fine-grained classification.
However, these channel dependencies of CGNL can impede
the practical implementations, which needs elaborate prepa-
rations for the number of channels per block, the number
of blocks and their positions as shown in our main paper.
Compared with the other nonlocal block with non-channel
concerned, our SNL has improvements with a large margin.

Table 4: Experiments for Nonlocal-based Blocks Added into
ResNet50 on CUB-200 Datasets

Models Top-1 (%) Top-5 (%)
ResNet50 85.43↑0.00 96.70↑0.00

+ NL 85.34↓0.09 96.77↑0.07

+ NS 85.54↑0.11 96.56↓0.14

+ A2 85.91↑0.48 96.56↓0.14

+ CGNL 86.14↑0.71 96.34↓0.36

+ Ours 86.02↑0.59 96.65↓0.05
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